Что такое дроссель и для чего он нужен?
В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе. Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике. Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного.Конструкция и принцип работы
Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:
Внешний вид изделия может быть таким, как на фото:
Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.
Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике. Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление. Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.
Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.
Интересное пояснение по данному вопросу вы также можете просмотреть на видео:
Наглядное сравнение, объясняющее принцип работы Теоретическая часть вопросаОбласть применения
Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.
Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:
Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь. В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение. Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.
В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.
Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.
В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.
В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.
С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.
Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.
Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!
Будет интересно прочитать:
Чтение схем: дроссель, катушка, конденсатор | Каталог самоделок
Дроссель, катушка индуктивности это спиралевидная, винтовидная либо винтоспиралевидная катушка, сконструированная из свёрнутого, хорошо заизолированного проводника. Данный провод обладает значительными показателями индуктивности при достаточно малой ёмкости и сопротивлении. И отсюда следует, что при протекании по катушке переменного электрического тока, наблюдается значительная инерционность.
Дроссели в основном применяются: для подавления незначительных помех, для сглаживания относительно небольших пульсаций, а также для ограничения электрического тока и накопления энергии. На схемах катушка индуктивности без магнитопровода обозначена под номером 1. Под номером 2 изображена также катушка, но уже с отводами.
№ 3 – Дроссель со скользящими контактами;
№ 4 – Дроссель с ферромагнитным магнитопроводом;
№ 5 – Реактор.
Обычно обозначение №5 применяется в схемах электроснабжения. Реакторы обычно применяются для сглаживания пульсаций выпрямленного тока в цепях тяговых двигателей.
Катушки индуктивности могут иметь не только ферромагнитные магнитопроводы, как у дросселей, но и магнитопроводы со специальными свойствами. Они рассмотрены в статье обозначений трансформаторов и автотрансформаторов.
О видах и характеристиках трансформаторов, можете почитать тут.
Конденсатор в переводе с латинского языка «condensare» — означает «уплотнять», «сгущать». Данный элемент представляет собой — специфический двухполюсник, обладающий как определёнными, так и переменными значениями показателя емкости и относительно малым показателем проводимости. Конденсатор, первым делом, предназначен для накопления электрической энергии и заряда электрического поля.
Конденсатор – пассивный электронный компонент. Самый простой конденсатор – это конструкция, состоящая из двух электродов в виде пластин, которые называются обкладками, разделённых слоем диэлектрика (все вещества, которые не пропускают электрический ток, называются диэлектриками). Толщина этого вещества с размерами самих обкладок довольно мала. Конденсаторы, по своим свойствам, подразделяются на конденсаторы переменной и постоянной ёмкости. Как следует из названий, емкость переменных конденсаторов можно изменять вручную, а у постоянных конденсаторов емкость – неизменна.
Постоянный и переменный конденсаторы
На электрических схемах постоянные конденсаторы обозначаются как на картинках № 6. Далее на картинках № 7 / 8/ 9 /10 представлены поляризованный, и электролитический поляризованный и неполяризованный конденсаторы соответственно. Обозначение № 9 – уже устарело, и его можно встретить только на старых советских схемах.
Конденсаторы переменной емкости на электротехнических схемах обозначены рисунками вида: рис. № 11, № 12– подстроечный. На рис № 13 проиллюстрирован – конденсатор – с нелинейной зависимостью емкости от напряжения.
Вариконд – конденсатор с нелинейной зависимостью ёмкости от напряжения
Если нужно показать подвижную обкладку конденсатора, то есть его ротор, то ее изображают в виде дуги № 14. На рис. № 15 приведено старое обозначение, здесь вместо дуги ставили точку.
Электрический дроссель: принцип действия, назначение, применение
Дроссель (в переводе с немецкого – «сокращать») – это одна из разновидностей катушек индуктивности. Главное предназначение этого элемента электрической схемы – «задерживать» (снижать на определенный период времени) влияние токов определенного диапазона частот. При этом резко изменить силу тока в катушке практически нереально – здесь вступает в силу закон самоиндукции, благодаря которому на выходе формируется дополнительное напряжение.
Дроссель необходим в электрической цепи в том случае, когда необходимо подавить переменную составляющую тока (например, помехи), существенно снизить пульсации в сети, а также ограничить или разделить в соответствии с поставленной задачей различные частотные сигналы (изоляция или развязка).
В электро – и радиотехнике применяется переменный ток в диапазоне от единиц до сотен миллиардов Гц. (1 герц – это одно колебание в секунду).
Условно такие широкие границы подразделяются на несколько участков:
- низкие ( звуковые) частоты (20 Гц – 20 кГц)
- ультразвуковые частоты (20 – 100 кГц)
- высокие и сверхвысокие частоты (от 100 кГц и выше).
Конструктивно низкочастотный дроссель очень напоминает обычный электрический трансформатор, только всего с одной обмоткой.
Последняя представляет собой витки изолированного провода, навитого на стальной сердечник, набранный из изолированных пластин (чтобы избежать возникновение токов Фуко), и обладает большой индуктивностью. Такая катушка характеризуется сильным противодействием любым изменениям тока в цепи: поддерживает его при убывании, и сдерживает при резком нарастании.
Также дроссели широко используются и при реализации различных высокочастотных электрических схем. В данном случае их исполнение может быть одно – или многослойным, при этом часто сердечники (как стальные, так и ферромагнитные) не используются. Иногда в качестве основы для навивки применяют обычные резисторы или пластмассовые каркасы. В диапазоне длинных и средних волн для обеспечения заданных параметров используется также специальная секционная намотка провода.
Главная техническая характеристика дросселя – индуктивность, которая измеряется в генри (Гн), сопротивление постоянному току, допустимое изменение напряжения, номинальный ток подмагничивания, а также добротность.
Последний показатель широко используется при расчетах колебательных контуров.
Применение магнитных сердечников позволяет существенно уменьшить габариты дросселей при тех же заявленных параметрах индуктивности. На высоких частотах используются ферритовые и магнитодиэлектрические составы, позволяющие, благодаря небольшой собственной емкости, использовать их в широком диапазоне.
По своему назначению такой вид катушек индуктивности можно подразделить на следующие виды:
- переменного тока. Используются для токоограничения в сети; например, во время пуска электродвигателя или импульсных ИВЭП.
- насыщения. Главное область применения – стабилизаторы напряжения.
- сглаживающие. Предназначены для ослабления пульсаций уже выпрямленного тока.
- магнитные усилители (МУ). Представляют собой катушки индуктивности, сердечник которой подмагничивается за счет постоянного тока. Меняя параметры последнего, можно изменять индуктивное сопротивление.
Существуют также трехфазные дроссели для использования в соответствующих цепях.
Сегодня разнообразные типы дросселей нашли широкое применение для решения разнообразных инженерных задач.
Интересное видео об электрических дросселях смотрите ниже:
Дроссель — свойства, обозначение, виды, использование
Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.
Что такое дроссель, внешний вид и устройство
Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.
Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.
Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без
Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.
Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.
Схематическое изображение дросселя с магнитным сердечником и без
Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.
Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).
Свойства, назначение и функции
Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.
Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток
Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.
У дросселя есть два свойства, которые тоже используют в схемах.
- так как это подвид катушки индуктивности, то он может запасать заряд
- отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).
В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.
Виды и примеры использования
Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:
- Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
- Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
- Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
- Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.
Практически в любой схеме есть этот элемент
Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.
Дроссель в лампах дневного света
Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:
- При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
- Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.
Как подключается дроссель в светильнике дневного света
В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.
В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.
Зачем нужен дроссель в блоке питания
Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.
Дроссель для сглаживания пульсаций
Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.
Как проверить дроссель мультиметром
Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.
Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.
Функция измерения индуктивности есть далеко не во всех мультиметрах
Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.
Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.
Так можно проверить исправность дросселя для ламп дневного света
Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.
Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.