закрыть
Как к вам обращаться:
Ваш номер телефона:
отправить
г.Вологда,
ул. С.Орлова д.4

Что такое дроссель в лампе


Дроссель для люминесцентных ламп: назначение, принципы работы

Люминесцентные лампы (лампы дневного цвета), которые широко используются и на производствах, и в общественных учреждениях, и в быту не могут подключаться в электросеть так же просто, как и лампы накаливания. Для обеспечения их пуска и работы существуют специальные устройства, одним из которых является дроссель для люминесцентных ламп. О нем и пойдет речь.

Дроссель для люминесцентных ламп

Дроссель для люминесцентных ламп

Независимо от победоносного «наступления» светодиодных ламп ведут, еще очень большое количество светильников с люминесцентными лампами будут работать, пока не выработают свой ресурс. Вдобавок на складах есть хороший запас ламп на смену вышедшим из строя. Скорее всего, переход на полностью светодиодное освещение займет не один десяток лет. И тема эксплуатации и ремонта светильников с газоразрядными ртутными лампами низкого давления (ГРЛНД – именно так по-научному называются люминесцентные лампы) будет еще актуальной очень долго.

Как происходит запуск и работа люминесцентных ламп при помощи дросселя

Для того чтобы понять для чего нужен дроссель стоит кратко рассмотреть устройство люминесцентной лампы, самый распространенный вид которой – это линейная люминесцентная лампа цилиндрической формы. Устройство люминесцентной лампы показано на следующем рисунке

Устройство люминесцентной лампы

Линейная люминесцентная лампа – это герметичный цилиндр из тонкого стекла (1) из которого выкачан воздух и закачан инертный газ (чаще всего это аргон) или смесь газов под давлением примерно 400 Па, что в 250 раз меньше атмосферного давления. Именно из-за сниженного давления лампа разбивается с характерным хлопком. Кроме этого, в колбу лампы строго дозировано помещено некоторое количество ртути, которая при таком разрежении находится преимущественно в газообразном виде.

На торцах трубки есть стеклянные ножки (2) в которые вплавлены электроды (3) – по два с каждой из сторон. Между электродами размещается вольфрамовая спираль, которая покрыта специальным химическим соединением – сочетанием оксидов бария, стронция и кальция (BaO, SrO и CaO) и тугоплавкой присадки на основе циркония (ZrO₂ или MgZrO₃). При нагреве этого состава свободные электроны разгоняются до таких скоростей, что способны покинуть кристаллическую решетку и «выпрыгнуть» в окружающее пространство. Такое явление называют термоэлектронной эмиссией, и оно широко используется как в люминесцентных лампах, так и в вакуумных электронных лампах.

На концах трубки сделаны цоколи (5) с контактными штырьками (4) с помощью которых лампа подключается в светильнике. На внутреннюю поверхность колбы лампы нанесен люминофор (9) — галофосфаты кальция или ортофосфаты кальция-цинка. Если люминофор облучать ультрафиолетовым (невидимым для глаз и вредным) излучением, то он начинает излучать свет уже в видимом диапазоне. Именно от состава люминофора и зависит цветовая температура, спектр и цветопередача люминесцентной лампы.

Чтобы понять роль дросселя для люминесцентных ламп, надо посмотреть, как он устроен. Его еще могут называть балластом или ЭмПРА (электромагнитный пускорегулирующий аппарат). Конструктивно дроссель – это катушка индуктивности, намотанная на сердечнике из ферромагнитных сплавов. Он замкнутый подобный трансформаторному, но только с одной обмоткой, выполненной медным эмаль-проводом. Следующий рисунок наглядно показывает «внутренний мир» дросселя для люминесцентных ламп.

Электромагнитный дроссель для люминесцентных ламп после «вскрытия»

Сердечник дросселя не цельный, а набран из отдельных пластин. Это сделано для того, чтобы в нем не возникали под действием переменного магнитного поля вихревые токи Фуко, которые способны сильно разогреть и даже при определенных условиях расплавить металл. Рассмотрим, как подключается люминесцентная лампа, какие происходят процессы при ее запуске и горении и узнаем про роль дросселя в них.

Схема №1: Подключение одной люминесцентной лампы

Как видно из представленной принципиальной схемы дроссель подключается последовательно лампе. Параллельно лампе подключен стартер с конденсатором C2, а параллельно питающему напряжению также подключен конденсатор C1. Что происходит, когда на такую схему подают сетевое напряжение 220 В?

  • Лампа в «холодном» состоянии не имеет в составе газов свободных зарядов, поэтому имеет очень высокое сопротивление. Поэтому, когда подают напряжение, ток через лампу не течет, а он начинает протекать по цепи стартера.

Устройство стартера для люминесцентных ламп

  • Стартер представляет собой небольшую неоновую лампу (3), в колбе которой находятся пара электродов – один неподвижный (2), а другой подвижный (1) в виде биметаллической пластины. При нагреве она будет изгибаться и приходить в контакт с неподвижным электродом. Каждая из люминесцентных ламп должна иметь свой стартер, подключаемый ей параллельно. Если светильник двухламповый, то он может иметь один дроссель, но стартер индивидуален для каждой. Двухламповый светильник подключают по следующей схеме.

Схема №2: Подключение двух ламп в светильнике с одним электромагнитным дросселем

  • Из данной схемы видно, что дроссель имеет мощность – не менее, чем сумма мощностей люминесцентных ламп, а стартеры рассчитаны на напряжение не 220 В, а на 127 В, так как лампы включены последовательно. Очень распространенная ошибка при монтаже люминесцентных светильников – это включение не соответствующего стартера. Рабочее напряжение и мощность подключаемых ламп всегда указывается на корпусе стартера.

Вся необходимая информация присутствует в маркировке стартеров

  • При подключении люминесцентного светильника к сети ток начинает протекать через дроссель, далее через одну из спиралей катода лампы, затем через тлеющий разряд стартера, потом через спираль другого катода лампа и далее уходить в сеть. Величина силы тока в этом случае небольшая (примерно 30—50 мА). Этого недостаточно для разогрева спиралей катодов, но вполне хватает для поддержания тлеющего разряда стартера, который будет подогревать электроды.
  • Биметаллический электрод в стартере от нагрева изгибается, приходит в контакт с неподвижным электродом. Ток в цепи резко возрастает до примерно 600 мА, так как он будет определяться только сопротивлением дросселя и спиралей катодов лампы. Тлеющий разряд в колбе стартера гаснет и электроды остывают, так как сопротивление контакта ничтожное. Возросший ток приведет к тому, что спирали в лампе нагреются (за 1—2 секунды до 800 °С), при этом интенсивно испуская электроны из-за явления термоэлектронной эмиссии. В результате возле катодов лампы образуется «электронный газ», который будет способствовать пробою и зажиганию разряда.
  • После остывания электродов в колбе стартера биметаллический электрод размыкается и здесь начинается самое интересное. Благодаря явлению самоиндукции при разрыве цепи в дросселе наводится ЭДС (электродвижущая сила) самоиндукции, которая препятствует уменьшению тока в цепи. Причем наводимая ЭДС совпадает по фазе с ЭДС сети, что приводит к резонансному ее скачку до значений выше 1 тысячи вольт, а это вызывает «пробой» газа в колбе лампы и зажигание дуги.

Графическое отображение появления «всплеска» ЭДС самоиндукции в дросселе в момент размыкания электрической цепи

  • Высоковольтный импульс возникшей ЭДС самоиндукции очень непродолжителен по времени, которого может не хватить на запуск лампы. Кроме этого, этот импульс может спровоцировать искровой дуговой разряд в стартере. Для предотвращения этого параллельно лампе стартера установлен конденсатор (C2 на первой схеме). Другой его задачей является увеличение временного промежутка действия ЭДС самоиндукции. Конденсатор, заряжаясь проводит переменный электрический ток, а напряжение на его пластинах возрастает постепенно. Как только напряжение на электродах конденсатора достигнет определенного порогового значения – происходит возникновение дугового разряда в лампе, но искрения электродов стартера при этом не будет.
  • Возле катодов лампы присутствуют эмитированные при разогреве спиралей электроны. Когда на лампе появляется повышенное напряжение, электроны приходят в движение, разгоняются до больших скоростей и при столкновении с атомами инертного газа «выбивают» с внешней орбиты электроны. Образуется большое количество электронов и положительно заряженных ионов инертного газа. Этот процесс ударной электронной ионизации лавинообразно нарастает и в колбе лампы начинает протекать переменный электрический ток.

Процессы, происходящие внутри люминесцентной лампы

  • Разогнанные электроны сталкиваются в том числе и с атомами ртути, при этом происходит их «возбуждение». Электроны с внутренних орбит после получения «порции» кинетической энергии от «бомбардировки» переходят на внешние орбиты. Но в таком состоянии атом не может существовать долго, поэтому электроны возвращаются на свои «родные» орбиты, но при этом выделяют энергию в виде квантов ультрафиолетового излучения, которые облучают люминофор, а он уже излучает свет в видимом диапазоне.
  • С появлением электрического разряда в колбе лампы резко падает ее электрическое сопротивление. Если этот процесс оставить бесконтрольным, то это приведет к росту тока до недопустимых величин. Ток ограничивает именно дроссель, который имеет и активное (оно незначительное) и реактивное сопротивление. Так как сопротивление лампы падает, то падение напряжения на ней будет недостаточное для того, чтобы в стартере зажегся тлеющий разряд. Специалисты говорят, что лампа шунтирует стартер. Поэтому во время работы исправной лампы он бездействует.
  • Конденсатор C1, подключенный параллельно питающему напряжению, служит для того, чтобы компенсировать реактивную мощность дросселя, так как ток отстает по фазе от напряжения на определенную величину, характеризуемую коэффициентом мощности (cosφ), который указывается на дросселе. О правилах подбора конденсатора C1 мы расскажем ниже.

Сдвиг фазы тока в электромагнитном дросселе на угол φ

  • Если отключить напряжение питания на светильнике, то разряд в лампе погаснет, все ионизированные атомы опять обретут свои электроны и станут нейтральными – произойдет рекомбинация. Сопротивление в колбе лампы опять вырастет и для ее запуска опять нужно задействовать стартер и дроссель.
Видео: Принцип работы люминесцентной лампы

Достоинства и недостатки электромагнитных дросселей для люминесцентных ламп

Электромагнитные дроссели самыми первыми стали использоваться совместно с люминесцентными лампами. Применяются они и до сих пор. Преимуществами ЭмПРА (балластов) являются:

  • Простота конструкции дросселя и его подключения.
  • Высокая надежность в случае применения с соответствующими лампами.
  • Долговечность – срок службы дросселя составляет не менее 10 лет. В старых светильниках некоторые дроссели работают уже по 40—50 лет.
  • Низкая цена, которая является следствием простоты конструкции.

Эот дроссель 1974 года выпуска до сих пор находится в исправном состоянии

Однако, электромагнитные дроссели не лишены и недостатков. К ним можно причислить:

  • Продолжительный по времени процесс запуска лампы. Он составляет примерно 1—10 сек и зависит от степени износа лампы.
  • ЭмПРА сам является потребителем энергии, так как ее часть тратится на разогрев. Потери могут составлять 15—20%. Дроссель может нагреваться до 100°C и выше, что делает его пожароопасным.
  • Небольшой коэффициент мощности (cosφ), который без компенсирующих конденсаторов находится в пределах 0,35—0,50. Это очень мало.
  • Дроссели при работе могут издавать низкочастотный гул дискомфортный для слуха. Особенно это касается низкокачественных и старых ЭмПРА.
  • При работе с электромагнитным дросселем лампы мигают с частотой 100 Гц. Это утомляет зрение и опасно для освещения движущихся механизмов, так как стробоскопический эффект может создать иллюзию их неподвижности.
  • Дроссель хоть и способен сглаживать пульсации напряжения в сети, но только незначительные. При нестабильном напряжении возможно мерцание лампы и повышенная шумность дросселя.
  • Лампы, работающие с ЭмПРА, изнашиваются скорее, чем с современными электронными устройствами запуска.
  • Дроссели имеют большие габариты и значительную массу (до нескольких килограмм).
  • При низких температурах светильники со стартерно-дроссельной схемой подключения могут не зажигаться. Это ограничивает их применение в уличном освещении.

Современные схемы включения люминесцентных ламп предполагают применение электронного балласта, называемого также ЭПРА, что означает Электронный Пускорегулирующий Аппарат. Качественный ЭПРА лишен всех недостатков, характерных для ЭмПРА, но имеет единственный – высокую цену. Этому устройству обязательно будет посвящена отдельная статья на нашем портале.

Как подбирать электромагнитный дроссель

Естественно к какой-то определенной люминесцентной лампе не может подключаться любой дроссель, его надо подбирать по следующим характеристикам:

  • Рабочее напряжение и частота. Для наших электросетей нас должны интересовать дроссели с напряжением 220—240 В и частотой 50 Гц.
  • Мощность дросселя, которая должна соответствовать мощности лампы. Если к ЭмПРА будет подключаться две лампы по Схеме 2, то мощность дросселя должна соответствовать сумме мощностей ламп. Это всегда указывается на маркировке дросселя и чаще всего указывается как типы и количество ламп, так и приведены принципиальные схемы подключения.
  • Ток лампы или группы ламп, который протекает в том числе и через дроссель. Он указывается в Амперах на корпусе дросселя.
  • Коэффициент мощности, который может обозначаться или cosφ, или греческой буквой λ (лямбда). Чем он больше – тем лучше, но в ЭмПРА он редко превышает порог в 0,5, поэтому однозначно требуется конденсаторная компенсация.
  • Превышение температуры дросселя над окружающей температурой Δt(°C) и максимальная температура ЭмПРА, которая при длительной работе не приведет к перегреву и выходу из строя. Эти два показателя регламентируются европейскими нормами EN На дросселе указываются в виде дроби, где в числителе Δt(°C), а в знаменателе максимальная температура.
  • Энергетическая эффективность ПРА, обозначаемая индексом EEI (Energy Efficiency Index), который разделен на 7 классов: A1, A2, A3, B1, B2, C, D. Этот показатель характеризует уровень рассеиваемой мощности на дросселе. Самая малая – классы A1— A3 (A1 – это регулируемые ЭПРА), которые «отданы» электронным ПРА. Средняя – это B1 и B2, и высокая – C, D, которые, кстати, уже запрещены в Европе. Градацию по классам можно увидеть в таблице.
Мощность лампы, Вт

Потребляемая мощность (лампа+ПРА) в соответствии с классом, Вт

A1A2A3B1B2CD
1591618212325>25
1810.51921242628>28
3016.53133363840>40
36193638414345>45
38203840434547>47
5829.55559646770>70
70366872778083>83
  • Параметры конденсатора, компенсирующего реактивную мощность электромагнитного дросселя. Здесь указывается рабочее напряжение и емкость конденсатора, подключаемого параллельно напряжению питающей сети.

Вся необходимая техническая информация есть в маркировке дросселя

Вся необходимая информация почти всегда указана в маркировке дросселя. Кроме этого, производители светотехнического оборудования публикуют на своих сайтах всю необходимую информацию, которая поможет правильно сочетать люминесцентную лампу (или две лампы) с ЭмПРА. Приведем пример из каталога известного производителя электрооборудования – финской компании Helvar, где указаны рекомендуемые дроссели к лампам T8 различной мощности. Лампы Т8 – являются самыми распространенными, они имеют диаметр колбы 26 мм, а на их цоколе G13 контактные штырьки расположены на расстоянии 13 мм друг от друга. В столбце «Схема №» идет ссылка на выше рассмотренные нами схемы подключения одной или двух люминесцентных ламп через один дроссель.

Электромагнитные дроссели для T8 ламп Helvar, 220 В, 50 Гц, 15-58 Вт

Мощн. (Вт)*К-во лампТок лампы, (A)Тип ЭмПРА  Класс EEIРазмеры Д*Ш*В, (мм)Масса, (кг)Схема №cosφРост темп. Δt(°C)Емкость компенс. конденс, 230/250В, (мкф)
15*10.31L15A-PB2150*42*280.5510.3550/854
15*20.31L30A-PB2150*42*280.5620.545/1104.5
18*10.37L18TL2B1150*42*28,80.8310.335/504.5
18*10.37L20A-PC150*42*280.5610.3555/854.5
18*10.37L18A-LC150*42*280.5110.3565/904.5
18*20.37L36TL2B1150*42*28,80.8320.5335/904.5
18*20.37L40A-CC150*42*280.5220.5355/1504.5
18*20.37L40A-PC150*42*280.5620.5355/1554.5
18*20.37L40A-LC150*42*280.5120.5565/1604.5
25*10.29L15A-PB2150*42*280.5510.550/853.5
30*10.365L30A-PB2150*42*280.5610.545/1104.5
36*10.43L36TL2B1150*42*28,80.8310.4335/904.5
36*10.43L40 A-CC150*42*280.5210.555/1504.5
36*10.43L40A-PC150*42*280.5610.555/1554.5
36*10.43L40A-LD150*42*280.5110.565/1604.5
38*10.43L36TL2B1150*42*28,80.8310.4535/904.5
38*10.43L40A-PC150*42*280.5610.4955/1554.5
38*10.43L40A-LD150*42*280.5110.4965/1604.5
58*10.67L58TL2B2230*42*28,81.3610.4735/957

Светильники для люминесцентных ламп всегда уже продаются оборудованными под конкретные типы ламп, а дроссель идет в комплектации по умолчанию. В случае выхода из строя ЭмПРА можно легко купить новый, с такими же характеристиками. Выбирать лучше дроссели известных брендов: Helvar, Vossloh-Schwabe, Philips, Osram, Tridonik, HEP, ELT и другие. Продукцию No Name лучше игнорировать. В настоящее время очень велико предложение качественных ЭмПРА бывших в употреблении. Это происходит на фоне массового внедрения светодиодных ламп того же форм-фактора, что и люминесцентных. «Модернизация» светильников при этом выглядит как установка одной перемычки и «выкидывание» стартера и ПРА – они в LED лампах не нужны.

Типичные неполадки дросселя их диагностика и устранение

Причин неисправности светильников люминесцентных ламп может быть много, но как узнать какая именно деталь подлежит замене. Причем сделать это в домашних условиях без применения специального инструмента и аппаратуры? На самом деле это очень просто, понадобятся набор отверток с изолированными ручками, нож монтажный, кусачки, пассатижи, мультиметр, индикаторная отвертка, съемник изоляции (опционально) и моток медного провода ПВ-1 поперечным сечением 0,75—1,5 мм² (примерно 2-3 метра). Кроме этого желательно сразу иметь заведомо исправный стартер, лампу и дроссель тех же номиналов, что и в проверяемом светильнике. Благо, что стоят они «сущие копейки» и продаются в любом магазине электротоваров.

Какая «симптоматика болезней» может быть у люминесцентных светильников?

  • Лампа не включается вообще и при этом никак не реагирует стартер и вольфрамовые спирали лампы. Такая неисправность может быть обусловлена как дросселем, так и лампой, и стартером или проблемой с коммутацией в светильнике. Для выявления проблемного элемента вначале меняется стартер, затем лампа. Если это не приносит никаких результатов, то после проверки коммутации проводов в светильнике и надежности контактов можно делать вывод о неисправности дросселя.
  • Внутри лампы наблюдается разряд в виде огненной змейки, которая постоянно перемещается. Такой эффект происходит из-за возрастания тока до недопустимых величин из-за чего стабильность разряда нарушается. Это однозначно говорит о неисправности дросселя или применении к лампе ЭмПРА несоответствующей мощности. Лампа и дроссель в таком режиме не прослужат долго.
  • Неустойчивое свечение или мерцание лампы быстро выведут ее из строя. «Слабым звеном» в этой ситуации может быть и лампа, и стартер, и дроссель. Если после замены лампы и стартера на заведомо исправные это явление не прекратилось – то «виноват» дроссель. Частое включение или отключение лампы приводит к быстрой деградации вольфрамовых спиралей и визуально это определяется как почернения на концах лампы.

Явный признак «начала конца» лампы — почернение в районе катодов

Для проверки дросселя без каких-либо приборов можно собрать самостоятельно простой испытательный стенд по такой схеме.

Простой стенд для проверки стартеров и дросселей сможет собрать любой домашний мастер

Лампу следует выбирать мощностью максимально близкой к мощности дросселя. После подключения такой конструкции к розетке могут наблюдаться такие явления:

  • Лампа не загорается вообще. Это явно свидетельствует о неисправности дросселя. Скорее всего, в нем обрыв.
  • Лампа загорается и горит очень ярко. Такое «поведение» лампы говорит о том, что сопротивление дросселя ниже паспортного вследствие межвиткового замыкания.
  • Лампа светит вполнакала или моргает при срабатываниях стартера. Это самый лучший случай, говорящий об исправном дросселе.
Видео: Проверка дросселя лампы дневного света

Дроссель можно проверить и без сборки стенда, но используя мультиметр, который надо настроить для проверки сопротивления в Омах. Этот способ удобен при покупке нового ЭмПРА в магазине. Повреждения дросселя могут быть разными:

Обрыв обмоток

Наиболее неприятная неисправность диагностируется легче всего. Обрыв может произойти по причине перегорания эмаль-провода обмотки ЭмПРА из-за недопустимо высоких токов или механического повреждения. Для того, чтобы проверить дроссель на обрыв надо:

  • Включить мультиметр и перевести его в режим измерения сопротивления (желательно в Омах).
  • Взять щупы и приложить их к клеммам дросселя. При этом недопустимо касаться щупов пальцами.
  • Если мультиметр показывает бесконечное сопротивление, то это однозначно говорит об обрыве.

Проверка обрыва обмоток дросселя

Обрыв может быть не в самой обмотке, а у клеммы дросселя, к которой припаяны два вывода эмаль-провода. Пайка может быть некачественной (холодной) и со временем отвалиться. Если это так, то можно аккуратно припаять эмаль провод паяльником мощностью не более 25 Ватт и восстановить работоспособность ЭмПРА. Если обрыв произошел внутри дросселя, то его перемотка – это довольно сомнительное по вложению труда и экономической целесообразности занятие при цене нового в 150—200 рублей (не нового 50—100 рублей). Лучший выход из такой ситуации – замена.

Замыкание обмоток

Некоторые схемы подключения люминесцентных ламп предполагают использование двух дросселей, которые собраны в одном корпусе. При этом две обмотки намотаны на одном сердечнике, что делает дроссель уже трансформатором. Обмотки «общаются» между собой только через магнитный поток, который они сами генерируют, но гальванически они должны быть полностью изолированными друг от друга.

Варианты подключения люминесцентных ламп. В схеме III применены сдвоенные дроссели L1 и L2

Бывают случаи, когда происходит пробой изоляции обмоток, что приводит к их гальваническому контакту. Это нарушает режимы работы, либо исключает вообще способность лампы зажигаться и гореть. Для проверки таких сдвоенных дросселей, которые являются редкостью, также надо использовать мультиметр. При этом последовательность действий такова:

  • Мультиметр включается и устанавливается на измерение сопротивления в Омах.
  • Щупами прозваниваются на обрыв каждая обмотка отдельно.
  • Прозваниваются обмотки между собой. Сопротивление должно быть бесконечным. Если это не так, то налицо замыкание двух обмоток.

Разумеется, дроссель с замкнутыми обмотками подлежит замене.

Межвитковое замыкание

Эту неисправность определить бывает очень сложно даже при помощи мультиметра. Межвитковое замыкание чаще всего происходит при перегреве дросселя. Тогда многослойное эмаль-лаковое покрытие провода высыхает, твердеет, покрывается трещинами и, в конце концов, на каком-то участке происходит пробой и выгорание изоляции. Этот пробой возникает чаще всего тогда, когда дроссель генерирует высоковольтный импульс. На участке, где произошел пробой происходит спекание провода, причем это может коснуться нескольких слоев обмотки.

Типичная картина спекания обмоточных проводов дросселя при межвитковом замыкании

Как диагностировать эту проблему?

  • Сперва надо визуально рассмотреть дроссель. При замыкании обмотки и горении лака, которым покрыты провода выделяется едкий дым с характерным запахом, который оставляет черные следы от копоти. И также и дроссель надо понюхать, так как запах горелого лака остается надолго. При малейших признаках – немедленная замена.
  • Всегда хорошо иметь заведомо исправный дроссель той же модели. Тогда померив мультиметром сопротивление «эталона» и сравнив его с «подопытным» можно судить о межвитковом замыкании. Разумеется, если такая неприятность произошла, то сопротивление «подопытного» дросселя будет отличаться в меньшую сторону.
  • Качественные дроссели известных производителей имеют примерно равные сопротивления при равенстве мощностей. Приведем справочные данные: ЭмПРА мощностью 20 Вт имеют сопротивление 55—60 Ом, мощностью 40 Вт – от 24 до 30 Ом, а мощностью 80 Вт – от 15 до 20 Ом. Сравнив измеренное мультиметром сопротивление со справочными данными можно судить с какой-то долей вероятности об исправности дросселя.

Следует отметить, что если «закоротило» всего несколько соседних витков, то мультиметр может ничего и не показать. Но в очень недалеком будущем эта проблема все равно проявится.

Пробой на корпус

Это встречающаяся в жизни неисправность, которая не только может нарушить режим работы лампы, но и быть опасной для жизни человека. Поэтому всегда при прозвонке обмотки дросселя мультиметром надо еще и проверить не существует ли гальваническая связь с самим корпусом. Если сопротивление отличается от бесконечного, то это однозначно говорит о пробое.

Проверка пробоя на корпус должна производиться всегда

Мультиметр измеряет сопротивление при помощи встроенной батарейки на 9 В, а сетевое напряжение – 220 В. Соответственно и токи в дросселе протекают разные. Бывает, что замер мультиметром ничего не дал, но именно при подаче сетевого напряжения и происходит пробой. Поэтому очень полезно при работающем светильнике проверить наличие фазы на корпусе дросселя. Если она есть, то это тоже говорит о пробое и такой ЭмПРА подлежит немедленной замене.

Проверка фазы на клеммах и на корпусе дросселя индикатором

Неисправности магнитопровода

Магнитопровод электромагнитного дросселя только с первого взгляда может показаться исключительно прочной конструкцией, но на самом деле все далеко не так. он набран из отдельных пластин из электротехнической стали (сплав железа с кремнием), которая имеет хорошие магнитные свойства, но очень посредственные прочностные. Электротехническая сталь очень хрупкая и при механических воздействиях на ней могут легко образовываться трещины или сколы, которые влияют на индуктивность.

Состояние этого магнитопровода очень далеко от идеального

Когда по обмотке дросселя протекает электрический ток, возникающее в сердечнике сильное переменное магнитное поле также оказывает механическое воздействие на пластины. А также не забываем, что ЭмПРА может в процессе работы нагреваться до высоких температур, а это приводит к температурному расширению и сжатию, а это просто громадные силы. Производители принимают меры для неизменности положения пластин и обмоток, делая в качественных дросселях вакуумную пропитку полиэфирным или полиэфирно-эпоксидным компаундом, который застывает и повышает электроизоляционные свойства и помогает зафиксировать пластины, сохраняя неизменность индуктивности. А также сердечник с обмоткой помещают в прочный металлический корпус, который «обхватывает» пластины и заодно является экраном, препятствующим распространению магнитного поля вне дросселя. Однако, со временем компаунд все равно теряет свои свойства, пластины «разбалтываются», начинают издавать гул с удвоенной частотой сети 100 Гц, индуктивность дросселя становится нестабильной, а это сильно влияет на работу лампы.

Как же диагностировать неисправности магнитопровода или какие принимать профилактические меры?

  • Некоторые дроссели неизвестного происхождения имеют «врожденный» недостаток магнитопровода. Если они даже новые издают сильный гул, то лучше сразу такой дроссель поменять на что-то более «приличное».
  • Любое устройство, даже самое надежное, имеет свой срок службы. И электромагнитные дроссели здесь не исключение. Поэтому, когда проходит заявленный производителем срок службы, ЭмПРА лучше поменять.
  • Опять отмечаем полезность наличия в запасе нового и исправного ЭмПРА точно такого же, который работает в светильнике. Для того чтобы сравнить рабочий и эталонный образцы потребуется мультиметр с функцией измерения индуктивности. Сравнив эти показатели можно принять решение оставить дроссель еще поработать или поменять на новый.

Многофункциональный прибор для измерения индуктивности, емкости и сопротивления

Главное правило при эксплуатации светильников с люминесцентными лампами – это своевременная диагностика при малейших признаках «болезни» и немедленная замена неисправных элементов. К сожалению, это соблюдается не всегда и не везде, поэтому нередко мы можем наблюдать не горящие или мерцающие лампы и слышать не самый приятный для уха шум от изношенных дросселей в длинных коридорах, офисах, производственных помещениях и даже в школьных классах.

Как заменить дроссель в светильнике с люминесцентными лампами

После диагностирования проблем светильника следующим этапом идет замена неисправных элементов. В большинстве светильников самые «слабые» звенья (лампа и стартер), которые чаще требуют замены находятся в легкодоступных местах и не требуют демонтажа светильника. Замена же электромагнитного дросселя доставляет больше хлопот и сделать это на потолочном светильнике очень трудно, часто просто невозможно без полного демонтажа светильника или его части, в которой расположена вся электрическая «начинка». Гораздо удобнее и безопаснее делать это на столе. Какие действия надо для этого предпринять?

  • Работу проводить только с напарником, так как в случае поражения электрическим током должен быть кто-то способный оказать первую помощь.
  • Обесточивается светильник, отверткой индикатором проверяется отсутствие фазы на входных клеммах.
  • Питающий провод отсоединяется от входных клемм, демонтируется светильник и дальнейшие работы производятся на подготовленном столе.

Демонтированная электрическая часть светильника на рабочем столе

  • Проверяется состояние проводов внутри светильника, при малейшем намеке на повреждение изоляции  или применении в светильнике алюминиевых проводов принимается решение на их замену медным проводом ПВ-1.
  • Отсоединяются провода со входной клеммы дросселя, которая может быть винтовой, пружинной самозажимной или иметь плоские ножевые контакты, которые раньше использовались во времена СССР.
  • Демонтируется дроссель. Он может крепиться винтами в резьбовые отверстия, гайками с шайбами к резьбовым шпилькам или саморезами по металлу.
  • Новый дроссель примеряется на посадочное место, в случае необходимости сверлятся новые отверстия под саморезы.
  • Дроссель монтируется на свое место, проверяется надежность его крепления.

Монтаж нового дросселя в светильник. На потолке это сделать очень трудно

  • Если и в старом, и в новом дросселе используются клеммы с ножевыми разъёмами, то штекера можно оставить при условии их хорошего состояния. Если на старом дросселе были винтовые или пружинные клеммы, то концы оголенные концы проводов удаляются кусачками и затем снимается изоляция на длину примерно 10 мм.
  • Оконцованные провода зажимаются в клеммах.
  • Проверяется правильность и надежность всех электрических соединений.
  • В светильник устанавливаются новые стартеры и лампы и производится пробный запуск прямо на столе. Если все работает, то лампы снимают и светильник монтируется на свое место.
  • Устанавливаются лампы и проверяется работоспособность светильника уже на своем месте.

Проверка светильника после монтажа

Процесс замены дросселя довольно простой, но мы все же рекомендуем тем, кто не имеет опыта электромонтажа, обратиться к специалистам, а самому поработать напарником.

Видео: Подключение двух ламп на один дроссель

Видео: Замена электромагнитного балласта в люминесцентном светильнике

Заключение

В настоящее время идет массовый переход на новые электронные ПРА для люминесцентных ламп и этот процесс остановить невозможно. Некоторые производители светотехнического оборудования сознательно отказались от выпуска электромагнитных ПРА и все новые светильники оборудованы только ЭПРА. И это совершенно логично, так как при этом в школьных классах или в больничных палатах не будет неприятного шума и мерцания, а срок службы ламп вырастет в разы. Но есть еще достаточно мест, где применение «шумных» ЭмПРА не вызовет никакого дискомфорта. Это различные производства, места массового посещения людей, мастерские и другие помещения, где шум от дросселей просто не слышен.

Поэтому «списывать со счетов» электромагнитные дроссели для люминесцентных ламп еще пока рановато. Они еще долго будут работать даже по той простой причине, что срок службы у них большой и надежность находится на высоте. И это доказано многолетней работой электромагнитных дросселей.

stroyday.ru

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется пускорегулирующая аппаратура, которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы

Правда имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.

Значит, фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют Фазную жилу питающего кабеля подсоединяют в дроссельСоединение второй лампы со вторым стартеромПодсоединение в цепь второй стороны лампыСоединение второй лампы с дросселемПо одному стартеру для каждой лампочкиУстановка пускателей в держателиДроссель один на две лампочкиПроверка работоспособности собранной схемы

Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным ЭПРА, вмонтированном внутри корпуса изделия.

В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. О том, как утилизировать отслужившие люминесцентные приборы, подробно написано здесь.

Избежать возникновения пожароопасной ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями

При неправильной эксплуатации может произойти взрыв колбы ртутной лампочки. Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем

Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и газоразрядных лампочек, с особенностями устройства и работы которых ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

Тонкости сборки схемы из двух ЛЛ с последовательным включением:

Видеоролик о том, что такое дроссель и зачем он нужен:

Проверка дросселя на предмет поломки:

О правилах выбора дросселя в зависимости от типа разрядной лампы:

Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.

В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.

Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фото по теме статьи, задавайте вопросы. Расскажите о том, как подбирали и подключали дроссель. Делитесь полезной информацией по аспектам выбора и технологии установки устройства.

sovet-ingenera.com

Для чего нужен дроссель для люминесцентных ламп?

Подключение лампы с электромагнитным дросселем

Электромагнитный дроссель находит применение в цепях коммутации люминесцентной лампы.

Назначение дросселя – формирование импульса для пробоя газонаполненной среды и поддержание необходимого напряжения и тока в схеме и на контактах элементов работающего светильника. Принцип работы дросселя основан на способности катушки индуктивности извлекать энергию из источника тока и сохранять ее в виде магнитного поля.

Чтобы выяснить, как работает дроссель, нужно рассмотреть свойства катушки индуктивности. Она плохо проводит переменный ток или совсем не проводит его. Индуктивность измеряется в Генри (Гн) и ее значение можно увеличить путем применения сердечника, оно таким образом повышается в несколько раз.

Во время замыкания контактов выключателя величина тока на катушке постепенно возрастает, а при размыкании сначала растет многократно, а затем плавно уменьшается. В соленоиде этот параметр не изменяется мгновенно.

Дроссель для люминесцентных ламп – это катушка индуктивности с ферромагнитным сердечником. Он находит применение только в электрических цепях, в которых предусмотрено наличие электромагнитного ПРА.

На картинках показана схема подключения газоразрядной лампы низкого давления с использованием электромагнитного дросселя.

  • 2 – электроды лампы;
  • 1 – колба (трубка);
  • Ст – стартер;
  • С1 – конденсатор, находящийся в одном корпусе со стартером;
  • С2 – конденсатор, повышающий коэффициент мощности;
  • Д – дроссель.
Механизм запуска лампы с электромагнитным балластом

При замыкании выключателя ток протекает по следующему пути: «дроссель – электрод лампы – стартер – второй электрод лампы – сеть».

Величины этого тока очень мало для зажигания лампы. Но его значения хватает для нагревания электродов стартера и появления в нем тлеющего разряда. Напряжение этого разряда меньше напряжения сети, но больше напряжения работающей лампы.

Разогретый биметаллический электрод в стартере замыкается со вторым, после чего тлеющий разряд между ними гаснет, электроды остывают и занимают первоначальное положение.

В момент замыкания электродов в стартере ток в схеме значительно возрастает и электроды люминесцентной лампы начинают нагреваться. В то же время при размыкании цепи на дросселе (в результате самоиндукции) происходит скачок напряжения, который, складываясь с входным напряжением сети, создает условия для включения лампы.

К этому моменту температура на электродах лампы успевает повыситься до значения, необходимого для эмиссии, а дросселирующее устройство создает высоковольтный импульс. Поэтому в лампе создаются условия для возникновения тлеющего разряда, который сначала происходит в аргоновой среде до тех пор, пока ртуть, помещенная в колбу, не перейдет полностью в парообразное состояние. После этого разряд будет происходить в ртутных парах, и лампа войдет в стабильный рабочий режим.

Напряжение на работающей лампе меньше сетевого за счет его падения на дросселе. Поскольку для срабатывания стартера напряжение на нем должно превышать величину напряжения на включенной лампе, повторно разряд в этом приборе не зажжется.

Зажигание лампы происходит при условии совпадения по фазе импульса дросселируемого напряжения и напряжения сети. Но поскольку совпадения этих значений относительно разбросаны по времени, стартер может срабатывать неоднократно перед тем, как лампа войдет в рабочий режим. В этом случае наблюдается мигание лампы в процессе включения. Одновременно в стартере создаются радиопомехи, для подавления которых служит конденсатор, находящийся в общем со стартером футляре.

Так выглядит электромагнитный дроссель

Это означает, что кроме зажигания этого осветительного прибора дроссель необходим для ограничения возрастания тока разряда до величины, при достижении которой лампа выходит из строя.

Все, изложенное выше, объясняет, для чего нужен дроссель.

В результате того, что он ограничивает ток в схеме работающей лампы, он представляет собой дополнительную нагрузку (балласт) и на нем теряется какая-то часть мощности. По уровню этих потерь дроссели делятся на следующие классы: D – с обычными; C – с пониженными; B – с особо низкими.

Потери мощности в дросселях

Класс

Потери мощности, Вт

дросселя

С лампой С лампой

С лампой

18 Вт

36 Вт 58 Вт

D

12 10

14

С

10 9

12

В2

8

7

9

В1

6 6

8

В силу физических свойств дросселя на нем происходит сдвиг по фазам между напряжением и током. Ток отстает от напряжения на величину, которую принято обозначать как cos φ. Чем выше его значение, тем экономичнее прибор, и наоборот, при понижении этой величины энергоэффективность снижается.

На рисунке показан график изменения тока и напряжения на люминесцентной лампе и лампе накаливания.

Основные виды дросселей

  • Электромагнитный дроссель для лампы, который подключается последовательно с лампой и в схеме необходимо наличие стартера.

К его достоинствам можно отнести низкую стоимость, простоту конструкции и достаточную надежность.

Недостатки: возможность появления шума и мерцания во время работы и при запуске; довольно продолжительный процесс включения; необходимость подключения конденсатора для снижения потерь.

Мощность дросселя должна соответствовать мощности лампы.

  • Электронный дроссель, для подключения которого не нужен стартер.

Положительные качества: быстрое включение; обеспечение работы лампы без миганий; компактность, малый вес.

В результате использования этого вида дросселей снижаются мерцания. Пульсаций при запуске лампы не происходит. Снижается вероятность появления шума при работе.

Дроссели можно разделить на две группы по типу сетей, в которых эксплуатируются лампы:

  1. однофазные (для использования в быту) на 220 В;
  2. трехфазные, которые устанавливаются в светильниках, работающих в сетях на 380 В. Это светильники для освещения промышленных предприятий, улиц и объектов сельскохозяйственного профиля.

Все эти виды дросселей также можно разделить по месту их расположения:

  • находящиеся внутри корпуса светильника, который обеспечивает им защиту от неблагоприятных факторов внешней среды и атмосферы;
  • помещенные в специальный кожух. Такое герметичное исполнение позволяет устанавливать эти приборы в осветительных сетях наружного освещения.

Ремонт светильников с перегоревшими дросселями

Светильники с перегоревшими электромагнитными дросселями можно отремонтировать самостоятельно, заменив отказавший элемент другим, например, применяемым в иных вариантах световой аппаратуры.

Например, в настольных светильниках с ЭмПРА можно использовать плату (с элементами, обеспечивающими горение лампы) от энергосберегающей лампы.

Для этого нужно найти экономичную перегоревшую лампочку (той же мощности, что и у ремонтируемой) с сохранившейся в хорошем состоянии электронной «начинкой».

Перегоревшая энергосберегающая лампа с электронной начинкой

Далее необходимо отделить от лампы цоколь вместе с платой и извлечь саму плату. При этом запомнить, где находятся выводы на высоковольтный конденсатор, на лампу и на входное напряжение питания 220 В.

Все штырьки, расположенные на плате, и конденсатор (на картинке он зеленого цвета) необходимо выпаять.

Он пойдет в нижнюю, пластмассовую часть цоколя настольной лампы.

Для этого снимаем нижнюю пластину в месте, отмеченном на рисунке, и вытаскиваем из вскрытого кожуха находящиеся в нем детали, которые были соединены при помощи латунных трубок с электродами лампы.

Вместо удаленных нами элементов к проводам, идущим на электроды, присоединяем конденсатор, выпаянный с платы, и помещаем во вскрытый кожух. После этого отделенную нами пластину возвращаем на место и приклеиваем клеем.

Помещаем во вскрытый кожух

Далее создаем точки соединения штырьковых выводов электродов с проводами, выходящими с преобразующей электронной платы, снятой с энергосберегающей лампы.

Создаем точки соединения штырьковых выводов электродов с проводами

Для этого провода с коммутирующего разъема припаиваем к контактам платы на выходе (на рисунке они находятся слева).

Плату помещаем в защитный корпус.

Зачем это нужно сделать?

Так как элементы на плате находятся под высоким напряжением, в целях электробезопасности нужно закрыть к ним доступ.

Через провода, находящиеся справа на рисунке, в схему подается входное напряжение от сети 220 В.

Для подключения используем вилку и розетку.

Включаем созданную конструкцию в сеть. Лампа загорается, светильник работает.

Такие и многие другие самоделки позволяют экономить деньги на покупке товаров, взамен вышедших из строя. При наличии некоторого объема знаний и опыта всегда есть возможность сделать нужные изменения и ремонт светильника своими руками.

lampagid.ru

Для чего нужен дроссель в люминесцентных лампах: назначение

Добрый день, друзья. Электрики часто могут разбрасываться непонятными словами, определение которых люди часто ищут в интернете, потому что не хотят создать впечатление глупого человека. Однако, если Вы чего-то не понимаете в работе электрика или услышали новое слово, то без стеснений задавайте вопросы — это, во-первых, расширит ваши знания, что никогда лишним не посчитается. Во-вторых, Вы будете более разбираться в работе с электричеством, что может помочь в дальнейшем избавиться от появившихся проблем с ним. На языке электриков — дроссель — это катушка, которая сохраняет в себе индуктивную энергию. Если же говорить обычным языком, то дроссель в люминесцентной лампе помогает регулировать силу тока, оставляя её в нормальном положении, и не допуская скачков напряжения. Более подробная информация о дросселе сохранена в статье. Приятного чтения.

Дроссель – это прибор, уменьшающий напряжение

Ни одна люминесцентная газоразрядная лампа (бытовой или офисный светильник, уличный фонарь) без дросселя работать не будет. Это своеобразный гаситель или ограничитель напряжения, которое подается в колбу газоразрядной лампы. А точнее сказать, на ее электроды. В принципе, с немецкого так это слово и переводится.

Но это не единственная функция данного прибора. Еще дроссель создает пусковое напряжение, которое необходимо для образования электрического разряда между электродами. Именно таким образом зажигается люминесцентный источник света. Кстати, пусковое напряжение краткосрочное, длится доли секунды. Итак, дроссель – это прибор, который отвечает и за включение лампы, и за ее нормальную работу.

Дроссель — прибор, отвечающий за нормальную работу ламп

Принцип работы

Необходимо сразу оговориться, что в основе принципа работы этого прибора лежит самоиндукция катушки. Если рассмотреть устройство дросселя, то это обычная катушка, которая работает по типу электрического трансформатора. То есть, можно смело применять в разговоре термин дроссель трансформатор. Хотя в конструкции лежит всего лишь одна обмотка.

Но именно эта конструкция считается низкочастотной. Почему такое у нее название? Все дело в том, что переменный ток, который протекает в бытовых сетях – это широкий диапазон колебаний: от единицы до миллиарда герц и выше. Пределы диапазона очень велики, поэтому чисто условно колебания разделяют на три группы:

  • Низкие частоты, их еще называют звуковые, имеют диапазон колебаний от 20 Гц до 20 кГц.
  • Ультразвуковые частоты: от 20 кГц до 100 кГц.
  • Сверхвысокие частоты: свыше 100 кГц.

Так вот вышеописанная конструкция – это низкочастотный дроссель трансформатор. Что касается высокочастотных приборов, то их конструкция отличается отсутствием сердечника. Вместо них, как основа навивки медного провода, используются пластиковые каркасы или обычные резисторы. При этом сам дроссель трансформатор представляет собой секционную (многослойную) навивку.

После чего прибор, наоборот, становится сдерживающим устройством. Ведь для того, чтобы лампа светилась, большого напряжения не надо. Отсюда и экономичность светильников данного типа.

Сердечник для дросселя

Материал для сердечника также представлен несколькими позициями. Его выбор лежит в основе габаритов самого дросселя. К примеру, магнитный сердечник – это возможность уменьшить размеры дросселя до минимума. При этом показатели индуктивности не изменяются.

Оптимальный вариант для высокочастотных приборов – это сердечники из магнитодиэлектрических сплавов или феррита. Кстати, именно сплавы позволяют использовать сердечники данного типа практически во всех диапазонах.

Характеристики

Выбирать дроссель трансформатор надо по нескольким характеристикам, главная из которых – индуктивность (измеряется в генри Гн). Но кроме этого еще есть и другие:

  • Сопротивление. Учитывается при постоянном токе.
  • Изменение напряжения (допустимого).
  • Ток подмагничивания, применяется номинальное значение.

Разновидность дросселей

Люминесцентные лампы представлены на рынке большим ассортиментом. И у каждого вида ламп дневного света свой дроссель трансформатор. К примеру, лампа ДРЛ и ДНАТ не могут зажигаться от одного вида дросселя. Все дело в различных параметрах пуска и поддержания горения. Здесь и напряжение отличается, и сила тока.

Но учитывать приходится тот факт, что лампа с годами «стареет». На вольфрамовые электроды люминесцентных ламп дневного света наносится специальная паста из щелочных металлов. Так вот эта паста постепенно испаряется, электроды оголяются, а, значит, повышается напряжение, что приводит к перегреву дросселя. Конечный результат может быть двух вариантов:

  1. Произойдет обрыв обмотки катушки, что приведет к отключению подачи напряжения на электроды.
  2. Произойдет замыкание катушки. А это подключение лампы напрямую к сети переменного тока. Лампа перегорит – это точно, а может и взорваться, что приведет к порче светильника в целом.

Поэтому совет – не стоит ждать, когда лампа сама перегорит. Есть специальный график замены, который определяет производитель, и которого необходимо строго придерживаться.

Опытные электрики при проведении профилактических работ обязательно проверяют эти осветительные приборы на параметр напряжения. Если он подходит к пределу нормы, то лампу меняют еще до срока эксплуатации. Лучше заменить недорогую лампу, чем дорогой дроссель трансформатор.

Добавим, что производители сегодня предлагают усовершенствованные системы защиты люминесцентных светильников. В их конструкцию добавили предохранительные автоматы, которые срабатывают при повышении напряжения внутри газоразрядного источника света.

Разделение по назначению

По сути, все дроссели делятся на две основные группы, как и лампы, в которых они устанавливаются.

  1. Однофазные. Их используют в светильниках бытовых и офисных с подключением к сети в 220 вольт.
  2. Трехфазные. Подключаются к сети 380 вольт. К ним относятся лампы ДРЛ и ДНАТ.

По месту установки эти приборы делятся также на две группы:

  1. Встраиваемые. Их еще называют открытыми. Такие дроссели устанавливают в корпус светильника, который защищает его и от влаги, и от пыли, и от ветра.
  2. Закрытые (герметичные, влагозащищенные). У этих приборов есть специальный короб, защищающий их. Такие модели можно устанавливать на улице под открытым небом.

Электронные аналоги

Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.

По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.

Полезные советы

Как и многие электронные приборы, дроссели маркируются в зависимости от своих параметров. Это достаточно сложная аббревиатура, которая неопытным электрикам будет непонятна.

Цветовая маркировка удобна, особенно для тех, кто начинает разбираться в области электрики. С ее помощью можно точно подобрать параметры устанавливаемых приборов (транзистор, электронный дроссель, резистор и так далее).

Источник: http://onlineelektrik.ru/eoborudovanie/transformatori/drossel-eto-pribor-umenshayushhij-napryazhenie.html

Электромагнитный дроссель для светильников

Электромагнитный дроссель представляет собой индуктивное сопротивление, состоящее из железного сердечника с медной проволокой. Основные недостатки: большая потеря мощности с выделением тепла. При долгом использовании электромагнтиных дросселей такая конструкция расшатывается и начинает дребезжать, что полностью исключается в электронных дросселях.

Какие основные преимущества при использовании электронного или электромагнитного дросселя для ламп?

  • Лампа с электронным дросселем не мерцает и меньше гудит при запуске, в отличие от электромагнитного дросселя;
  • Запуск лампы с электронным дросселем происходит почти мгновенно, т.е. сразу после нажатия кнопки. Следует учесть, что существует два вида запуска ламп: холодный старт и горячий старт. При холодном старте запуск ламп быстрый, но в то же время сокращается срок службы лампы;
  • Электромагнитный дроссель для лампы стоит на порядок дешевле, чем электронный дроссель, а также проще схема подключения. Но в то же время мерцание в электромагнитных лампах происходит чаще, и глаза устают быстрее. Запуск лампы с магнитным дросселем происходит медленнее, и по мере увеличения срока службы лампы, это время становится больше;
  • Экономичность электронных намного превышает экономичность электромагнитных дросселей;
  • Светового потока от электронного дросселя гораздо больше, поэтому при закупке можно значительно сэкономить на количестве ламп, а в целом – на электроэнергии;
  • В целом, преимущество электронных дросселей для ламп очевидно по сравнению с их аналогами. Основная причина того, что электромагнитные все еще присутствуют на рынке  — это их дешевизна по сравнению с электронными.

Источник: http://sones.ru/stati/drossel-dlya-svetilnikov.html

Что такое дроссель? Область применения этого устройства

Дроссель представляет собой особую разновидность обычной катушки индуктивности, которая служит для сдерживания на короткий период времени переменного тока или токов некоторых частот. По сути, это тот же трансформатор, но дроссель не имеет вторичной обмотки. Существует несколько видов данных устройств, каждый из которых используется для решения определенных задач:

  • Низкочастотный дроссель. Представляет собой стальной сердечник из нескольких пластин, вокруг которого расположена обмотка. Такие устройства отличаются значительным противодействиям изменениям тока в сети. При падении устройство поддерживает его, при усилении, наоборот — сдерживает.
  • Высокочастотный дроссель. Данное устройство может состоять из магнитного или стального сердечника и оснащаться несколькими слоями обмотки. Используются для контроля тока в цепях с высокой индуктивностью.

Дроссель — обязательный элемент в современных люминесцентных лампах и осветительных элементах ДРЛ, ДНАТ и CDM. Также он используется в качестве своеобразного фильтра в импульсных блоках питания. В электрических сетях дроссель выполняет защитную функцию, предотвращая самопроизвольное возникновение дуги при коротком замыкании на землю.

Источник: http://vse-postroim-sami.ru/qa/212_chto-takoje-drossely-oblasty-primenenija-etogo-ustrojstva/

Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения

Дроссель для люминесцентных ламп является незаменимым элементом, обеспечивающим запуск прибора и его последующее беспроблемное функционирование.

Изучив подробнее особенности и схему подключения, можно самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Зачем нужен балласт?

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных

Из чего состоит дроссель?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметровДроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока.

А для более габаритных изделий потребуется пускорегулирующая аппаратура, которая бывает как электромеханического, так и электронного типа.

Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы

Правда, имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будетРассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

Поэтому фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.

Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера

Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталосьОсталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента. Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее.

Важно чтобы их тип и мощность соответствовали параметрам ЛЛКаждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим

В противном случае они никак не отреагируютФазную жилу питающего кабеля подсоединяют в дроссель. Соединение второй лампы со вторым стартером. Подсоединение в цепь второй стороны лампыСоединение второй лампы с дросселем. По одному стартеру для каждой лампочкиУстановка пускателей в держателиДроссель один на две лампочки.

Проверка работоспособности собранной схемы. Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным ЭПРА, вмонтированном внутри корпуса изделия.

Перегрев дросселя и возможные последствия

Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром.

К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиямиПри неправильной эксплуатации может произойти взрыв колбы светильника.

Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики.

Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.

Это могут быть:

  • проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
  • плохой материал рассеивателя осветительного прибора;
  • схема зажигания – со стартером или без него пожарная опасность одинакова.

Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.

Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и разрядной лампочки

Источник: http://sovet-ingenera.com/elektrika/svetylnik/drossel-dlya-lyuminescentnyx-lamp.html

Выбираем и подключаем дроссель для люминесцентных ламп правильно

Люминесцентная лампа относится к газоразрядным устройствам. Следовательно, в ее конструкции должен присутствовать элемент, ограничивающий ток.

В противном случае сила тока будет нарастать лавинообразно, что несомненно приведет к поломке лампы, а, возможно, и к ее взрыву.

Такой ограничитель разработчиками люминесцентных ламп предусмотрен. Его роль играет электронное или электромагнитное устройство — дроссель (или балласт).

Где применяется дроссель в электрике?

Характеристики энергосберегающей лампы предполагают наличие балласта, поглощающего лишнюю мощность в электроцепи. В лампе мощностью 36-40 Вт дроссель забирает около 6 Вт (15%).

Электромагнитные дроссели для ламп люминесцентного типа

Основные функции дросселя:

  • подогрев катодов для их подготовки к эмиссии электронов;
  • создание напряжения, необходимого для стартового разряда;
  • ограничение тока, протекающего по электрической схеме после старта.

В цепи переменного тока дроссель обеспечивает сдвиг фаз между током и напряжением. Величина отставания тока от напряжения, которую вызывает дроссель, указана в его маркировке (cos ϕ). Данная характеристика имеет еще одно название – коэффициент мощности.

P = U х I х cos ϕ, где

I – сила тока.

Дроссели классифицируются по уровню мощности и шума.

По уровню мощности дроссели делятся на три класса:

  • С – с низким уровнем;
  • В – с супернизким;
  • D – со средним уровнем поглощения.

Различаются дроссели и по уровню шума:

  • С – очень низкий;
  • А – особо низкий;
  • П – пониженный;
  • Н – нормальный.

Принцип работы

Устройство в лампе работает в паре со стартером:

  • при подаче напряжения на лампу ток попадает на стартер – элемент, состоящий из баллона и конденсатора (в баллоне, заполненном инертным газом, размещены контакты из биметалла);
  • под воздействием напряжения происходит ионизация газа, и ток протекает по цепи дросселя. Газ и контакты разогреваются, что приводит к увеличению силы тока до 0,5 А. Следом разогреваются и катоды и освобождаются электроны. Они, в свою очередь, способствуют разогреву ртутных паров, помещенных в трубку лампы;
  • как только контакты замыкаются, завершается ионизация. Температура стартера падает, контакты размыкаются.

Наглядное представление работы дросселя

Как подобрать

Выбирая дроссель к люминесцентной лампе, в первую очередь обращайте внимание на его мощность: она должна совпадать с мощностью светильника.

Еще один вопрос, требующий решения: какой дроссель вы хотите купить – электронный или электромагнитный. Цены на них заметно отличаются.

Cтоимость электромагнитного дросселя в зависимости от мощности начинается примерно со 150 рублей (импортный вариант), аминимальная цена на электронный дроссель составляет около 500 рублей.

Классификация приборов

В люминесцентных лампах могут использоваться электромагнитные или электронные дроссели. Каждому из видов присущи определенные достоинства и недостатки.

Электромагнитные

Электромагнитный дроссель представляет собой катушку с металлическим сердечником. Для обмотки используются медный и алюминиевый провода. От их диаметра зависит нормальная работа светильника. Потери мощности устройства составляют от 10 до 50%.

Люминесцентные лампы с электромагнитными дросселями стоят недорого, не требуют дополнительной настройки. Однако электромагнитный дроссель весьма чувствителен к нестабильности электрической сети. Малейшее колебание приводит к мерцанию лампы и повышению уровня шума: светильник начинает гудеть.

На разогревание электромагнитного дросселя тратится четверть мощности светильника.

Электромагнитные дроссели имеют право на жизнь, они обеспечивают достаточную надежность светильников. Но сейчас их активно вытесняют электронные балласты.

Электронные ПРА

Электронный дроссель имеет более сложную конструкцию. В его состав входят:

  1. Фильтр электромагнитных помех. Гасит электромагнитные импульсы самого светильника и устраняет внешние помехи – от сети.выпрямитель: служит для преобразования тока.
  2. Схема коррекции коэффициента мощности. Отвечает за контроль сдвига по фазе переменного тока, который проходит через нагрузку.
  3. Фильтр сглаживающий. Снижает уровень пульсации переменного тока.
  4. Инвертор. Отвечает за преобразование постоянного тока в переменный.
  5. Балласт. Индукционная катушка, участвующая в накоплении энергии, подавлении помех и плавной регулировке яркости свечения.

При включении лампы ток из выпрямителя поступает на буфер конденсатора. Там происходит сглаживание частоты пульсации. Высокое напряжение попадает на инвертор и заряжает микросхемы и конденсаторы.

Поджиг происходит при минимальном значении напряжения 600 В. Этот процесс происходит всего за 1,7 сек.

Схема подключения с люминесцентными лампами 2х18

Схема подключения ПРА с двумя люминесцентными лампами, мощностью 18В

Для подключения двух ламп мощностью 18W требуется индукционный тип устройства мощностью не менее 36 Вт (подойдет ПРА на 40 Вт) и два стартера S2 на 4-22 Вт.

Снизить помехи и компенсировать реактивную мощность можно при помощи конденсатора, подключенного параллельно к питающим контактам осветительного прибора.

Вариантов, подключения ПРА и ЭПРА множество, поэтому далее приведет несколько понятных рисунков-схем с самыми распространенными видами соединений.

Схема последовательного подключения ламп через дроссельПодключение с использованием дополнительной лампы накаливания (без дросселя)Схема подключения с двумя дросселями

Ремонт своими руками

Электромагнитный дроссель можно изготовить и своими руками. Но делается это редко. Гораздо чаще умельцы самостоятельно восстанавливают ПРА, так как приобрести нужную модель не всегда удается (особенно трудно найти ее в «глубинке»).

Для новой обмотки можно использовать медный провод диаметром 0,64-0,8 мм. Тысячу витков наматывают без межслойной изоляции внавал.

На перемотку дросселя уходит не более двух часов.

Источник: http://finelighting.ru/texnologii-i-normy/sistemy/drosseli/vybiraem-podklyuchaem-lyuminescentnyx-lamp-pravilno.html

Обзор видов дросселей для люминесцентных ламп

Освещение – необходимый элемент комфорта в помещении. Разнообразие светильников ведет к еще большему разнообразию элементов, из которых они состоят. Дроссель – один из необходимых составляющих для обеспечения работы люминесцентных ламп. Читайте про устройство и принцип работы электродвигателя.

Для чего нужен?

Дроссель в лампах такого типа служит для формирования электроимпульса для поджига газоразрядной лампы. Суть в том, что в отличии от обыкновенной лампы накаливания, люминесцентную лампу просто так в сеть не включишь, ей нужны специфические условия.

Принцип работы

Главный принцип работы дросселя – производить сдвиг фазы переменного тока на 90 градусов, в момент перехода через 0. Это обеспечивает поддержание необходимого тока для горения паров металла в лампе.

Самая главная характеристика дросселя – коэффициент потерь мощности на поддержания нужных параметров  электропитания лампы.  Обозначаются параметры тока, мощности, и емкости конденсатора. Для всех дросселей в зависимости от мощности параметры разные.

  • назначение дросселя в люминесцентной лампе — сформировать необходимый импульс для пробоя газонаполненной среды и поддерживать необходимую мощность во время работы.
  • Дроссель на основании для люминесцентной лампы на снимке

  • маркировка дросселей для люминесцентных ламп — по поглощению мощности и делятся на группы B C D.
  • Под индуктивностью дросселя для люминесцентных ламп подразумевается индуктивное сопротивление самого дросселя, которое позволяет регулировать мощность электричества, поступающего на контакты лампы.

Дроссели для ламп подразделяются по точно таким же характеристикам, что и лампы, которые будут подключаться к этому дросселю. Подключение дросселя, не соответствующего характеристикам лампы приведут либо к поломке, либо к поломке. Дроссели имеют следующие разграничения по мощности:

  1. дроссель для люминесцентных ламп 9вт – энергосберегающие лампы
  2. Дроссели для люминесцентных ламп различной мощности на фото

  3. 11w — миниатюрные светильники, энергосберегающие лампы
  4. 15w — настольные и миниатюрные светильники
  5. Дроссель мощностью 18w — настольные лампы и офисные настольные лампы
  6. 36вт маломощные люминесцентные лампы
  7. 58вт — потолочные светильники
  8. дроссель 65вт — потолочные многоламповые светильники
  9. 80вт — мощные люминесцентные лампы
  10. электронный дроссель для двух люминесцентных ламп может быть либо рассчитанный по мощности двух ламп, либо дроссель, специально предназначенный для двух ламп
  11. дроссель стартер для люминесцентных ламп обозначается маркировкой ПРА и ЭПРА. Так как дроссель и стартер являются ключевыми элементами при работе люминесцентной лампы, то и объединение их в один элемент являлось закономерным явлением
  12. трансформатор для люминесцентных ламп без дросселя предназначен для холодного розжига люминесцентных ламп. При использовании трансформатора обеспечивается горение без мерцания, но и количество включений должно быть сведено к минимуму.
  13. из дросселя можно сделать размагничиватель. Для этого дроссель разбирают, оставляют только сердечник с витками провода. К ним припаивают силовой провод для сети 220 вольт. Используют для размагничивания кинескопов, отверток, пинцетов.
  14. Из дросселя сделан размагничиватель на фото

  15. можно доработать дроссель люминесцентной лампы как блок питания, намотав некоторое количество витков на уже имеющиеся витки самого дросселя. Предварительно необходимо снять кожух.

Устройство

Дроссель состоит из наборного сердечника из электротехнической стали, на которую намотан медный провод. Все это заключено в кожух.

Схема устройства дросселя на картинке

Разборка дросселя для люминесцентных ламп сводится к:

  1. удалению кожуха с дросселя,
  2. размотке провода,
  3. после чего остается один сердечник
  4. Сердечник состоит из  пластин, набранных в виде параллелепипеда.

Расчёт дросселя необходим, когда выполняется подключение нескольких ламп или дроссель изготавливается исходя из заданных параметров.

Подключение

Подключение к сети люминесцентной лампы с дросселем выполняется квалифицированным электриком. Само подключение не представляет из себя ничего сложного, если лампа с дросселем уже в сборе.

Схема подключения люминесцентной лампы через дроссель проста:

  1. Напряжение поступает последовательно ко всем точкам сборки, начиная с конденсатора,
  2. Затем поступает на катушку дросселя,
  3. После выхода из которой, последовательно соединяет все клеммы дампы и через стартер,
  4. После чего соединяется со вторым сетевым контактом.

В этом варианте есть и недостатки, но в критических ситуациях это один из выходов. Для понимания механизма работы такого метода нужно понимать механизм розжига люминесцентной лампы.

Подключение люминесцентных ламп без дросселя проводится с предварительно замкнутыми попарно контактами лампы с двух сторон, вне зависимости от того – целая спираль или нет.

На одну сторону лампы подается плюс, на другой – минус. Срок службы лампы от этого ниже, но и используется этот способ на уже сгоревших лампах, так что этот метод более похож на реинкарнацию лампы.

Схемы включения люминесцентных ламп без дросселя не отличаются разнообразием. Все сводится к подаче повышенного напряжения в момент пуска, и это напряжение зависит от характеристик лампы и питающей сети.

Как проверить исправность?

Для проверки дросселя его нужно:

  • извлечь из светильника,
  • тестером или мультиметром проверить его сопротивление.
  • У работающего дросселя сопротивление будет иметь некую постоянную величину. У неисправного – либо показывать короткое замыкание, либо обрыв.

Как заменить?

У люминесцентных ламп дроссель обычно компактный и его легко демонтировать. Подводящие провода подключены через клеммную колодку, поэтому замена дросселя сводится к простой операции по откручиванию и закручиванию четырех винтиков.

Стоимость дросселя для люминесцентных ламп

Стоимость дросселя варьируется от мощности лампы, на которую он рассчитан и от раскрученности бренда. Обычно стоимость варьируется от ста рублей за маломощный экземпляр для настольной лампы до 1000 за аналог для мощных ламп.

Где купить дроссель для люминесцентных ламп?

Купить дроссели можно в любой торговой точке, занимающейся продажей электротехнических товаров.

Источник: http://howelektrik.ru/osveshhenie/lampy/energosberegayushhie/obzor-vidov-drosselej-dlya-lyuminescentnyx-lamp.html

Дроссель для ламп дневного света — как проверить? Схема подключения и ремонт

В условиях постоянного роста тарифов на использование электроэнергии, значительно увеличился спрос населения на более экономичные люминесцентные лампы (лампы дневного света).

Внутри стеклянной колбы, какой бы формы она ни была, имеются:

  1. Инертный газ с парами ртути.
  2. Спиральные электроды. Люминесцентное покрытие (люминофор), нанесенное на стенки колбы.

Принцип работы заключается в следующем: под действием электрического тока, спирали (электроды) раскаляются и зажигают газ, под действием которого начинает светиться люминофор.

Конструктивно, дроссель (ЭмПРА) представляет собой катушку индуктивности со специальным ферромагнитным сердечником. Как правило, катушка с сердечником помещена в металлический корпус.

Чем отличается дроссель от трансформатора

Принцип работы лампы дневного светаВ момент включения, первым начинает работу стартер.

В момент разрыва электрической цепи в ЭмПРА, благодаря эффекту самоиндукции, возникает высоковольтный импульс (800-1000 В), который обеспечивает электрический разряд в среде инертного газа.

Под действием этого разряда, начинается невидимое ультрафиолетовое свечение паров ртути, которое, воздействуя на люминофор, заставляет его светиться в видимом спектре.

После зажигания газа, напряжение в колбе не превышает половины напряжения электросети, что недостаточно для последующего замыкания контактов стартера. Таким образом, при устойчивом свечении, стартер не участвует в рабочем процессе и его контакты остаются разомкнутыми.

Зажигание газа не всегда происходит с первого раза. Иногда стартеру необходимо 5-6 попыток повторить вышеописанный процесс, что вызывает, неприятный для глаз человека, эффект «моргания».

Избежать этого эффекта помогает использование так называемого электронного дросселя (ЭПРА), принцип действия которого заключается в следующем:

  1. Низкочастотное напряжение бытовой электросети преобразуется в постоянное.
  2. Полученное постоянное напряжение инвертируется в высокочастотное (до 133 кГц) переменное напряжение.
  3. При подключении ЭПРА происходит резкое увеличение силы тока и напряжения до величин, достаточной для прогрева электродов и возникновения газового разряда.
  4. После начала свечения люминофора, напряжение на электродах уменьшается до величины напряжения свечения, а частота импульсов изменяется до уровня, при котором устанавливается ток номинального значения.

Использование электронного балласта позволяет обеспечить розжиг электродов мгновенно и при этом избавиться от неприятного «моргания».

Виды

Существует несколько способов классификации ПРА, используемых в схемах подключения люминесцентных ламп.

При этом, их различают по:

  1. Принципу работы:
    • ЭмПРА (электромагнитные дроссели);
    • ЭПРА (электронные балласты);
  2. По уровню потери мощности, (уровень потери энергии дросселя может составлять от 15 до 100% мощности лампы):
    • D (обычный);
    • С (пониженный);
    • В (особо низкий);
  3. По уровню звукового шума:
    • Н (нормальный);
    • П (пониженный);
    • С (очень низкий);
    • А (особо низкий);

Подключение лампы дневного света

В общем случае, ЭмПРА к лампе дневного света подключается по последовательной электрической схеме. При этом, стартер подключается параллельно лампе, а параллельно электрической сети подключается компенсационный конденсатор, который служит для коррекции коэффициента мощности.

Существует также большое количество электрических схем подключения ламп дневного света вообще без стартера или любых видов ПРА. Среди них особенно популярна электрическая бездроссельная схема, применение которой нисколько не изменяет технических характеристик люминесцентной лампы, но зато значительно продлевает срок ее службы.

Неисправности и ремонт электромагнитного ПРА

Чаще всего, источником неисправностей, связанных с применением ламп дневного света, является электрическая схема включения ПРА и стартера.

К таким визуальным эффектам относятся:

  1. «Огненная змейка», вьющаяся по колбе. Ее появление свидетельствует о том, ток в лампе превышает допустимое значение, вследствие чего, электрический разряд стал нестабильным. Если при проверке вольт-амперной характеристики лампы, выявлены несоответствия заданным параметрам, то дроссель нужно менять.
  2. Потемнение колбы в зоне выходных контактов. Если потемнела колба в зоне цоколя, значит лампа скоро выйдет из строя. Основная причина этого явления — несоответствие значений пускового и рабочего тока вольт-амперной характеристике. Это чаще всего связано с неисправностью ПРА.
  3. Перегоревшие спирали. Чаще всего, спирали в лампе дневного света перегорают по причине сильной изношенности изоляции обмотки ЭмПРА.
  4. Запах гари или появление посторонних звуков. Возможно межвитковое замыкание в катушке индуктивности.
  5. Лампа не включается. Причиной также может быть неисправный ПРА, в котором произошел обрыв провода в обмотке. Правда этот вид неисправности встречается редко.

Проверку дросселя лучше всего проводить с помощью контрольного, заведомо исправного светильника. Для этого необходимо два провода, идущие от него соединить с цоколем проверочного светильника и включить эту конструкцию в электрическую сеть. Если люминесцентный светильник загорится в полную силу, значит дроссель исправен.

Ремонт

Самостоятельный ремонт ПРА рекомендуется проводить только специалистам, имеющим определенный опыт в осуществлении слесарных и электро-монтажных работ. Кроме того, необходимо наличие измерительных приборов и знание основных правил техники безопасности.

Только после этого можно приступить к демонтажу ПРА и установке на его место нового. При этом, необходимо внимательно следить за тем, чтобы соединить провода в том же порядке, в каком они были подключены ранее.

ВАЖНО: схемы подключения конкретных моделей нанесены на их корпусах. Там же указывают рабочее напряжение и электрическое сопротивление обмотки индуктивности.

Использование мультиметра

На определенном этапе проведения ремонтных работ, можно воспользоваться мультиметром.

С его помощью можно определить:

  1. Целостность обмотки катушки индуктивности и ее электрическое сопротивление.
  2. Наличие межвиткового замыкания.
  3. Наличие обрыва в обмотке катушки индуктивности.

Однако, ремонт обмотки катушки индуктивности — дело не простое и также требует определенных навыков. Поэтому, в случае необходимости, проведение таких работ лучше поручить специалистам.

Советы

Выбирая новый ПРА:

  1. Необходимо обратить особое внимание на бренд изготовителя. Как правило, приобретение дешевого изделия неизвестного производителя гарантирует низкое качество изготовления. Надежный ПРА должен обеспечить надежную работу в течение не менее 3-х лет.
  2. На рынке можно случайно приобрести бракованное изделие. Поэтому, если позволяет бюджет, лучше приобрести несколько штук и договориться с продавцом о последующем возврате оставшихся.
  3. Лучше посоветоваться с людьми, имеющими определенный опыт работы с люминесцентными осветительными приборами.

В настоящее время, электронные ПРА, несмотря на относительно высокую цену, приобретают все большую популярность.

Ведь их использование позволяет:

  1. Увеличить срок службы ламп дневного света за счет применения щадящих режимов запуска и дальнейшего функционирования. Кроме того, в схеме подключения отсутствует часто ломающийся стартер.
  2. Полностью избавиться от шума и «моргания» в процессе эксплуатации.
  3. Получить до 20% экономии электроэнергии.

Источник: http://househill.ru/kommunikacii/electrika/svet/drossel-dlya-lamp.html

Подключение люминесцентной лампы через дроссель и без него (схемы)

Люминесцентные лампы являются наиболее распространенными источниками искусственного света. При этом схемы из подключения сложнее, чем схемы ламп накаливания. Требуется наличие пусковых приборов, качеством которых определяется срок службы ламп.

Схема с использованием ЭмПРА или электромагнитного балласта

Электромагнитный пускорегулирующий аппарат (или ЭмПРА), называемый дросселем, представляет собой наиболее простую схему со стартером. Она активно применяется с советских времен и позволяет подключать к электросети люминесцентные приборы дневного освещения.

Стартером называют небольшую лампочку, состоящую из неонового наполнения и двух электродов, выполненных из биметалла. Для нормального положения характерна их разомкнутость.

Принцип работы схемы следующий:

  • в момент включения электропитания почти все поступающее напряжение направлено на разомкнутые стартерные контакты. В результате этого происходит образование тлеющего разряда в стартере, который приводит к разогреванию биметаллических электродов. Под действием нагревания происходит их изгибание, приводящее к замыканию цепи;
  • далее внутреннее сопротивление ЭмПРА является единственным ограничением для тока в цепи стартера. Как следствие, происходит почти трехкратное возрастание рабочего тока в лампе, это приводит к моментальному разогреву электродов в люминесцентном светильнике;
  • в это время происходит размыкание цепи за счет остывания биметаллических электродов в стартере;
  • при разрыве цепе самоиндукция дросселя производит запуск высоковольтного импульса, приводящего к возникновению разряда в газовой среде, результатом чего становится зажигание лампы;
  • электроды стартера находятся в разомкнутом состоянии, а сам он не участвует в схеме работы в тот момент, когда светит лампа. Для схем с одной лампой требуются стартеры на 220 Вольт;
  • встречаются последовательные схемы, включающие 2 лампы, для которых требуются стартеры на 127 Вольт.

К основным недостаткам схемы относят:

  1. Расход электроэнергии в данном случае выше на 15%, чем при использовании электронных балластов.
  2. Длительное время запуска (от 1 секунды до 3), которое определяется износом лампы.
  3. Пластины дросселя издают гудящий звук, который постепенно усиливается.
  4. Стробоскопическое мерцание света отрицательно сказывается на зрении.
  5. В случае низких температур происходит отказ работы.

Применение электронного балласта или ЭПРА

Электронный пускорегулирующий аппарат, называемый ЭПРА (электронный балласт), подает напряжение высоких частот (25-133 кГц), тогда как электромагнитный осуществляет подачу напряжения сетевой частоты. Благодаря этому мигание света, заметное для глаз, исключается.

Такая схема подключения люминесцентных светильников фактически является преобразователем. Он необходим из-за особенностей конструкции, поскольку этого требует принцип работы лампы, являющейся источником света и обладающей отрицательным сопротивлением.

Плюсы таких схем следующие:

  • особый режим работы и пуск в результате прогревания контактов более бережным способом позволяет продлить срок эксплуатации лампы;
  • схемы ЭПРА сэкономить на электричестве 15-20%, чем при использовании ПРА;
  • мерцание и шум во время работы отсутствуют;
  • стартер для работы схемы не требуется.

Нельзя не отметить малых габаритов и выгодной стоимости ЭПРА по сравнению с дросселем.

Чаще всего такие аппараты комплектуются требуемыми проводами, имеются в продаже модели с удобным подключением сразу к лампам.

В схему включена микросхема, реализующая систему защиты от перегораний или включений в момент отсутствия лампы, это происходит путем блокирования работы транзисторов.

Схема подключения двух люминесцентных ламп

Рассмотрим, как осуществляется подключение двух ламп по 18 Ватт, а также порядок выполнения работ. Чтобы подключить два люминесцентных светильника последовательным путем, требуется наличие:

  • двух ламп;
  • индукционного дросселя;
  • двух стартеров.

Первым делом требуется параллельное подключение стартера к каждой линейной лампе. Чтобы это сделать, требуется воспользоваться одним штыревым выходом с каждого торца обеих ламп. Вторые контакты последовательным способом требуется подключить к сети через дроссель.

В целях компенсирования реактивной мощности, а также для снижения помех, которые постоянно возникают в электросетях, требуется подключение конденсаторов к лампам параллельным способом. В данном случае необходимо учитывать особенность залипания контактов в результате высокого тока при пуске. Особенно это относится к стандартным бытовым выключателям с невысокой стоимостью.

Электронные схемы дают возможность подключать сложные системы, такие как подсветка рекламных щитов, а также обеспечение освещением в крупных помещениях промышленного назначения.

Можно ли заменить люминесцентные лампы светодиодными

Люминесцентные лампы и подключенные линейные источники света применяются в учебных, медицинских и многих других заведениях.

Источник: http://remontposobie.ru/elektrika/podklyuchenie-lyuminescentnoj-lampy-cherez-drossel-i-bez-nego-sxemy.html

Подключение люминесцентных ламп

Отличительный принцип схемы подключения люминесцентных светильников заключается в необходимости включения в нее приборов пускового типа, от них зависит длительность эксплуатации.

Для того чтобы разбираться в схемах необходимо понимать принцип работы данных светильников.

Технические характеристики люминесцентных ламп

Устройство светильника люминесцентного типа – это герметичный сосуд, наполненный особой консистенцией из газа. Расчёт смеси производился с целью растрачивания меньшей энергии ионизации газов в сравнении с обычными лампами, за счет этого можно хорошо сэкономить на освещении дома или квартиры.

На двух сторонах лампы устанавливаются электроды, которые принимают напряжение, и поддерживают разряд. Каждый электрод имеет два контакта, с которыми происходит соединение источника тока. За счет этого происходит нагревание зоны, которая окружает электроды.

Светильник загорается впоследствии нагрева каждого электрода. Происходит это за счет воздействия на них высоковольтных импульсов и последующей работы напряжения.

Изменяя структуру данного вещества происходит изменение гаммы цветовых температур.

Специальные балласты помогают обеспечить такие условия.

Подключение через электромагнитный балласт

Стартер выглядит как небольшой по мощности источник неонового освещения. Для его питания необходима электросеть с переменным значением тока, также он оснащен некоторым количеством биметаллических контактов.

Другой вариант возможен при замещении стартера на кнопку от входного звонка.

Напряжение будет осуществляться удержанием кнопки в состоянии нажатия. Когда светильник зажжётся ее необходимо отпустить.

1-й способ подключения люминесцентных ламп

  • подключенный дроссель сохраняет электромагнитную энергию;
  • с помощью стартерных контактов поступает электричество;
  • перемещение тока осуществляется с помощью вольфрамовых нитей нагревания электродов;
  • нагрев электродов и стартера;
  • затем размыкаются контакты стартера;
  • энергия, которая аккумулируется с помощью дросселя освобождается;
  • светильник включается.

Для того чтобы увеличить показатель полезного действия, уменьшить помехи в модель схемы вводятся два конденсатора.

  1. простота;
  2. демократичная цена;
  3. она надежна;

Недостатки схемы:

  • большая масса устройства
  • шумная работа;
  • лампа мерцает, что не хорошо сказывается на зрении;[/su_note]
  • потребляет большое количество электроэнергии;
  • включается устройство около трех секунд;
  • плохое функционировании при минусовых температурах.

Очередность подключения

  1. Подключение стартера к штыревым контактам лампы, которые имеют вид нитей накаливания.
  2. Остальные контакты подключается к дросселю.
  3. Конденсатор подключается к контактам питания параллельным образом. За счет конденсатора компенсируется уровень реактивной мощностью, и происходит уменьшение количества помех.

Подключение люминесцентных ламп через электронный балласт

Микросхемами обеспечивается питание светильников, подогрев электродов, тем самым повышается их продуктивность и увеличиваются сроки эксплуатации. Имеется возможность совместно с лампами данной схемы подключения использовать диммеры – это устройства, которые плавно регулируют яркость свечения.

Повышается частота за счет этого происходит уменьшение интенсивности нагревания электродов. Использование электронного балласта в схеме подключения позволяет подстроиться под свойства светильника.

Плюсы схемы данного вида:

  • большая экономия;
  • лампочка плавно включается;
  • отсутствует мерцание;
  • бережно прогреваются электроды лампы;
  • допустимая эксплуатация при низких температурах;
  • компактность и маленькая масса;
  • долговременный срок действия.

Минусы схемы данного вида:

  • усложненность схемы подключения;
  • большая требовательность к установке.

Порядок подключения ламп 18 вт

Светильник подключается в три этапа:

  1. происходит прогревание электродов, за счет чего аккуратно и размеренно запускается устройство;
  2. создается мощный импульс, который требуется для поджигания;
  3. рабочее напряжение балансируется и подается на лампу.

Подключение люминесцентных ламп последовательно

Очередность подключения

  • Параллельное подсоединение стартера к каждой лампе.
  • Последовательное подсоединение с помощью дросселя свободных контактов к сети.
  • Параллельное подсоединение конденсаторов к контактам лампы. За счет этого происходит снижение помех, а также компенсирование реактивной мощности.

Источник: https://nesmetnoe.ru/stroitelstvo/elektrika/98-podklyuchenie-lyuminestsentnykh-lamp.html

Принцип работы и схема подключения люминесцентной лампы

Начиная с того времени, как была изобретена лампа накаливания, люди ищут способы создания более экономичного, и в то же время без потерь светового потока, электроприбора. И вот одним из таких приборов стала люминесцентная лампа. В свое время такие светильники стали прорывом в электротехнике, таким же, как в наше – светодиодные. Людям казалось, что такая лампа вечная, но они ошибались.

Трудно найти хотя бы одно офисное помещение, где не было бы светильников для ламп дневного света. Конечно, этот световой прибор подключается не так просто, как его предшественники, схема питания люминесцентных ламп гораздо сложнее, и она не столь экономична, как светодиодная, но все же по сей день она остается лидером на предприятиях и в офисных помещениях.

Нюансы подключения

Схемы включения ламп дневного света подразумевают наличие электромагнитного пускорегулирующего аппарата или дросселя (представляющего собой своеобразный стабилизатор) со стартером. Конечно, в наше время есть люминесцентные лампы без дросселя и стартера и даже приборы с улучшенной цветопередачей (ЛДЦ), но о них чуть позднее.

После того как электроды достаточно разогрелись, стартер обеспечивает разрыв цепи. А дроссель ограничивает ток во время замыкания, обеспечивает высоковольтный разряд для пробоя, зажигая и поддерживая стабильное горение лампы после запуска.

Принцип действия

Как уже говорилось, схема питания лампы дневного света принципиально отличается от подключения приборов накаливания. Дело в том, что электроэнергия здесь преобразовывается в световой поток посредством протекания тока сквозь скопление паров ртути, которые смешаны с инертными газами внутри колбы. Происходит пробой этого газа при помощи высокого напряжения, поступающего на электроды.

Как это происходит, можно понять на примере схемы.

На ней можно увидеть:

  1. пускорегулирующий аппарат (стабилизатор);
  2. трубка лампы, включающая в себя электроды, газ и люминофор;
  3. слой люминофора;
  4. стартерные контакты;
  5. стартерные электроды;
  6. цилиндр корпуса стартера;
  7. пластинка из биметалла;
  8. наполнение колбы из инертного газа;
  9. нити накаливания;
  10. излучение ультрафиолета;
  11. пробой.

Слой люминофора наносится на внутреннюю стенку лампы для того, чтобы преобразовать ультрафиолет, который невидим человеку, в освещение, принимаемое обычным зрением. При изменении состава этого слоя можно изменить оттенок цвета осветительного прибора.

Общие сведения о люминесцентных лампах

Оттенок цвета люминесцентной лампы, как и светодиодной, зависит от цветовой температуры. При t = 4 200 К свет от прибора будет белым, и маркироваться она будет как ЛБ. Если же t = 6 500 К, то освещение приобретает чуть синеватый оттенок, становится более холодным.

И еще один момент, касающийся размеров. В народе люминесцентную лампу Т8 на 30 Вт называют «восьмидесяткой», подразумевая, что ее длина – 80 см, что не соответствует действительности. На самом деле длина составляет 890 мм, что на 9 см длиннее. Вообще же самые ходовые ЛЛ – это как раз Т8. Их мощность зависит от длины трубки:

  • Т8 на 36 Вт имеет длину в 120 см;
  • Т8 на 30 Вт – 89 см («восьмидесятка»);
  • Т8 на 18 Вт – 59 см («шестидесятка»);
  • Т8 на 15 Вт – 44 см («сороковка»).

Как подключить люминесцентную лампу без дросселя

Чтобы ненадолго продлить работу сгоревшего светового прибора, существует вариант, при котором возможно подключение лампы дневного света без дросселя и стартера. Он предусматривает использование умножителей напряжения.

С1 и С2 необходимо подобрать для 600 В, а С3 и С4 – под напряжение в 1 000 В. По прошествии некоторого времени пары ртути оседают в области одного из электродов, в результате чего свет от лампы становится менее ярким. Лечится это путем изменения полярности, т.

Подключение люминесцентных ламп без стартера

Задача этого элемента, обеспечивающего питание люминесцентных ламп – увеличение времени разогрева. Но долговечность стартера небольшая, он часто сгорает, а потому имеет смысл рассмотреть возможность того, как включить люминесцентную лампу без него. Для этого нужна установка вторичных трансформаторных обмоток.

На таких лампах имеется маркировка RS. При установке такого прибора в светильник, оборудованный этим элементом, лампа быстро горит.

Электронный пускорегулирующий аппарат

Электронный балласт в схеме питания ЛЛ заменил устаревший электромагнитный, улучшив пуск и добавив комфорта человеку. Дело в том, что более старые пусковые устройства потребляли больше энергии, часто издавали гудение, отказывали и портили лампы.

Сначала происходит выпрямление тока, проходящего через диодный мост и при помощи С2 напряжение сглаживается. Обмотки трансформатора (W1, W2, W3), включенные противофазно, нагружают генератор с высокочастотным напряжением, установленный после конденсатора (С2). В параллель к ЛЛ включен конденсатор С4.

При поступлении резонансного напряжения происходит пробой газовой среды. Нить накаливания в это время уже разогрета.

Конструктивные особенности, а вместе с ними и схема включения люминесцентных ламп постоянно обновляются, изменяясь в лучшую сторону в экономии электроэнергии, уменьшаясь в размерах и увеличиваясь в долговечности работы. Главное – правильная эксплуатация и умение разобраться в огромном ассортименте, предлагаемом производителем. И тогда ЛЛ еще долго не покинут рынок электротехники.

Источник: https://lampagid.ru/vidy/lyuminestsentnye/skhema-podklyucheniya-lampy

prorabkin.com


Смотрите также