Звоните нам
г.Вологда, улица Сергея Орлова, 4

Эпра для люминесцентных ламп что это такое

Что такое ЭПРА для люминесцентных ламп: как работает + схемы подключения

Вас интересует, зачем нужен электронный модуль ЭПРА для люминесцентных ламп и как его следует подключить? Правильный монтаж энергосберегающих светильников позволит многократно продлить их срок эксплуатации, ведь верно? Но вы не знаете, как подключить ЭПРА и нужно ли это делать?

Мы расскажем вам о назначении электронного модуля и его подключении – в статье рассмотрены конструкционные особенности этого аппарата, благодаря которому формируется так называемое стартерное напряжение, а также поддерживается оптимальный рабочий режим светильников.

Приведены принципиальные схемы подключения люминесцентных лампочек с применением электронного пускорегулятора, а также видеорекомендации по применению подобных аппаратов. Которые являются неотъемлемой частью схемы газоразрядных ламп, несмотря на то что конструктивное исполнение таких источников света может значительно отличаться.

Конструкции пускорегулирующих модулей

Конструкции промышленных и бытовых люминесцентных лампочек, как правило, оснащаются модулями ЭПРА. Аббревиатура читается вполне доходчиво – электронный пускорегулирующий аппарат.

Электромагнитное устройство старого образца

Рассматривая конструкцию этого устройства из серии электромагнитной классики, сразу можно отметить явный недостаток – громоздкость модуля.

Правда, конструкторы всегда стремились минимизировать габаритные размеры ЭМПРА. В какой-то степени это удалось, судя по современным модификациям уже в виде ЭПРА.

Набор функциональных элементов электромагнитного пускорегулирующего устройства. Его составными частями, как видно, являются всего два компонента – дроссель (так называемый балласт) и стартер (схема формирования разряда)

Громоздкость электромагнитной конструкции обусловлена внедрением в схему крупногабаритного дросселя – обязательного элемента, предназначенного сглаживать сетевое напряжение и выступать в качестве балласта.

Помимо дросселя, в состав схемы ЭМПРА входят стартеры (один или два). Очевидна зависимость качества их работы и долговечности лампы, т. к. дефект стартера вызывает фальшивый старт, что означает перегрузку по току на нитях накала.

Так выглядит один из конструктивных вариантов стартера пускорегулирующего электромагнитного модуля люминесцентных ламп. Существует масса других конструкций, где отмечается разница в размерах, материалах корпуса

Наряду с ненадежностью стартерного пуска, люминесцентные лампы страдают от эффекта стробирования. Проявляется он в виде мерцания с определенной частотой, близкой к 50 Гц.

Наконец, пускорегулирующий аппарат обеспечивает значительные энергетические потери, то есть в целом снижает КПД ламп люминесцентного типа.

Усовершенствование конструкции до ЭПРА

Начиная с 1990 годов, схемы люминесцентных ламп все чаще стали дополнять усовершенствованной конструкцией пускорегулирующего модуля.

Основу модернизированного модуля составили полупроводниковые электронные элементы. Соответственно, уменьшились габариты устройства, а качество работы отмечается на более высоком уровне.

Результат модификации электромагнитных регуляторов – электронные полупроводниковые устройства запуска и регулировки свечения люминесцентных ламп. С технической точки зрения, отличаются более высокими эксплуатационными показателями

Внедрение полупроводниковых ЭПРА привело практически к полному исключению недостатков, какие присутствовали в схемах аппаратов устаревшего формата.

Электронные модули показывают качественную стабильную работу и увеличивают долговечность люминесцентных светильников.

Более высокий КПД, плавное регулирование яркости, повышенный коэффициент мощности – все это преимущественные показатели новых модулей ЭПРА.

Из чего состоит приспособление?

Главными составляющими элементами схемы электронного модуля являются:

  • выпрямительное устройство
  • фильтр электромагнитного излучения
  • корректор коэффициента мощности
  • фильтр сглаживания напряжения
  • инверторная схема
  • дроссельный элемент.

Схемное построение предусматривает одну из двух вариаций – мостовая либо полумостовая. Конструкции, где используется мостовая схема, как правило, поддерживают работу с лампами высокой мощности.

Примерно на такие приборы света (мощностью от 100 ватт) рассчитаны пускорегулирующие модули, выполненные по мостовой схеме. Которая, кроме поддержки мощности, оказывает положительное влияние на характеристики питающего напряжения

Между тем, преимущественно в составе люминесцентных светильников эксплуатируются модули, построенные на базе полумостовой схемы.

Такие приборы на рынке встречаются чаще по сравнению с мостовыми, т. к. для традиционного применения достаточно светильников мощностью до 50 Вт.

Особенности работы аппарата

Условно функционирование электроники можно разделить на три рабочих этапа. Первым делом включается функция предварительного прогрева нитей накала, что является важным моментом в плане долговечности газовых приборов света.

Особенно необходимой эта функция видится в условиях низкотемпературной окружающей среды.

Вид рабочей электронной платы одной из моделей пускорегулирующего модуля на полупроводниковых элементах. Эта небольшая легкая плата полностью заменяет функционал массивного дросселя и добавляет ряд улучшенных свойств

Затем схемой модуля запускается функция генерации импульса высоковольтного импеданса – уровень напряжения около 1,5 кВ.

Присутствие напряжения такой величины между электродами неизбежно сопровождается пробоем газовой среды баллона люминесцентной лампы – зажиганием лампы.

Наконец, подключается третий этап работы схемы модуля, основная функция которого заключается в создании стабилизированного напряжения горения газа внутри баллона.

Уровень напряжения в этом случае относительно невысок, чем обеспечивается малое потребление энергии.

Принципиальная схема пускорегулятора

Как уже отмечалось, часто используемой конструкцией является модуль ЭПРА, собранный по двухтактной полумостовой схеме.

Принципиальная схема полумостового устройства запуска и регулировки параметров люминесцентных светильников. Однако это далеко не единственное схемное решение, какие применяются для изготовления ЭПРА

Работает такая схема в следующей последовательности:

  1. Сетевое напряжение в 220В поступает на диодный мост и фильтр.
  2. На выходе фильтра образуется постоянное напряжение в 300-310В.
  3. Инверторным модулем наращивается частота напряжения.
  4. От инвертора напряжение проходит на симметричный трансформатор.
  5. На трансформаторе за счет управляющих ключей формируется необходимый рабочий потенциал для люминесцентной лампы.

Ключи управления, установленные в цепи двух секций первичной и на вторичной обмотке, регулируют требуемую мощность.

Поэтому на вторичной обмотке формируется свой потенциал для каждого этапа работы лампы. Например, при разогреве нитей накала один, в режиме текущей работы другой.

Рассмотрим принципиальную схему полумостового ЭПРА для ламп мощностью до 30 Вт. Здесь сетевое напряжение выпрямляется сборкой из четырех диодов.

Выпрямленное напряжение от диодного моста попадает на конденсатор, где сглаживается по амплитуде, фильтруется от гармоник.

На качество работы схемы оказывает влияние правильный подбор электронных элементов. Нормальная работа характеризуется параметром тока на плюсовом выводе конденсатора С1. Длительность импульса розжига светильника определяется конденсатором С4

Далее посредством инвертирующей части схемы, собранной на двух ключевых транзисторах (полумост), напряжение, поступившее из сети с частотой 50 Гц, преобразуется в потенциал с более высокой частотой – от 20 кГц.

Он подается уже на клеммы люминесцентной лампы для обеспечения рабочего режима.

Примерно по такому же принципу действует мостовая схема. Разница состоит лишь в том, что в ней используются не два инвертора, а четыре ключевых транзистора. Соответственно, схема несколько усложняется, добавляются дополнительные элементы.

Узел схемы инвертора, собранный по мостовой схеме. Здесь в работе узла участвуют не два, а четыре ключевых транзистора. Причем зачастую предпочтение отдается полупроводниковым элементам полевой структуры. На схеме: VT1…VT4 – транзисторы; Tp – трансформатор тока; Uп, Uн – преобразователи

Между тем именно мостовой вариант сборки обеспечивает подключение большого количества ламп (более двух) на одном балласте. Как правило, устройства, собранные по мостовой схеме, рассчитаны на мощность нагрузки от 100 Вт и выше.

Варианты подключения люминесцентных ламп

В зависимости от схемных решений, используемых в конструкции пускорегулирующих аппаратов, варианты подключения могут быть самые разные.

Если одна модель устройства поддерживает, к примеру, подключение одного светильника, другая модель может поддерживать уже одновременную работу четырех ламп.

Простейший вариант питания светильника через электромагнитный пускорегулирующий элемент: 1 – нить накала; 2 – стартер; 3 – стеклянная колба; 4 – дроссель; L – фазная линия питания; N – нулевая линия

Самым простым подключением видится вариант с электромагнитным устройством, где основными элементами схемы являются лишь дроссель и стартер.

Здесь от сетевого интерфейса фазная линия соединяется к одной из двух клемм дросселя, а нулевой провод подводится на одну клемму люминесцентной лампы.

Фаза, сглаженная на дросселе, отводится от его второй клеммы и соединяется на вторую (противоположную) клемму.

Остающиеся свободными еще две клеммы лампы подключаются к розетке стартера. Вот, собственно, и вся схема, которая до появления электронных полупроводниковых моделей ЭПРА использовалась повсеместно.

Вариант подключения двух люминесцентных светильников через один дроссель: 1 – фильтрующий конденсатор; 2 – дроссель, по мощности равный мощности двух приборов света; 3, 4 – лампы; 5,6 – стартеры запуска; L – фазная линия питания; N – нулевая линия

На базе этой же схематики реализуется решение с подключением двух люминесцентных ламп, одного дросселя и двух стартеров. Правда в этом случае требуется подбирать дроссель по мощности, исходя из суммарной мощности газовых светильников.

Дроссельный схемный вариант можно доработать с целью устранения дефекта стробирования. Он довольно часто возникает именно на светильниках с электромагнитным ЭПРА.

Доработка сопровождается дополнением схемы диодным мостом, который включается после дросселя.

Подключение к электронным модулям

Варианты подключения люминесцентных ламп на электронных модулях несколько отличаются. Каждый электронный пускорегулирующий аппарат имеет входные клеммы для подачи сетевого напряжения и выходные клеммы под нагрузку.

В зависимости от конфигурации ЭПРА, подключается одна или несколько ламп. Как правило, на корпусе прибора любой мощности, рассчитанного на подключение соответствующего количества светильников, имеется принципиальная схема включения.

Порядок подключения люминесцентных светильников к устройству пуска и регулирования, действующего на полупроводниковых элементах: 1 – интерфейс для сети и заземления; 2 – интерфейс для светильников; 3,4 – светильники; L – фазная линия питания; N – нулевая линия; 1…6 – контакты интерфейса

На схеме выше, к примеру, предусматривается питание максимум двух люминесцентных ламп, так как в схеме используется модель двухлампового балласта.

Два интерфейса прибора рассчитаны так: один для подключения сетевого напряжения и заземляющего провода, второй для подключения ламп. Этот вариант тоже из серии простых решений.

Аналогичный прибор, но рассчитанный уже для работы с четырьмя лампами, отличается наличием увеличенного числа клемм на интерфейсе подключения нагрузки. Сетевой интерфейс и линия подключения заземления остаются без изменений.

Разводка подключения по четырехламповому варианту. В качестве устройства запуска и регулирования также используется электронный полупроводниковый ЭПРА. На схеме 1…10 – контакты интерфейса устройства пуска и регулирования

Однако наряду с простыми устройствами, – одно-, двух-, четырехламповыми – встречаются пускорегулирующие конструкции, схематика которых предусматривает использование функции регулировки свечения люминесцентных ламп с помощью.

Это так называемые управляемые модели регуляторов. Рекомендуем подробнее ознакомиться с принципом работы регулятора мощности осветительных приборов.

Чем отличаются подобные приборы от уже рассмотренных устройств? Тем, что в дополнение к сетевому и нагрузочному оснащаются еще интерфейсом для подключения управляющего напряжения, уровень которого обычно составляет 1-10 вольт постоянного тока.

Четырехламповая конфигурация с возможностью плавной регулировки яркости свечения: 1 – переключатель режима; 2 – контакты подвода управляющего напряжения; 3 – заземляющий контакт; 4, 5, 6, 7 – люминесцентные лампы; L – фазная линия питания; N – нулевая линия; 1…20 – контакты интерфейса устройства пуска и регулирования

Таким образом, разнообразие конфигурации электронных пускорегулирующих модулей позволяет организовать системы осветительных приборов разного уровня. Имеется в виду не только уровень мощности и охвата площадей, но также уровень управления.

Выводы и полезное видео по теме

Видеоматериал, сделанный на основе практики электромонтера, рассказывает и показывает — какой прибор из двух должен быть признан конечным пользователем более качественным и практичным.

Этот сюжет лишний раз подтверждает, что простые решения выглядят надёжными и долговечными:

Между тем ЭПРА продолжают совершенствоваться. На рынке периодически появляются новые модели таких приборов. Электронные конструкции тоже не лишены недостатков, но по сравнению с электромагнитными вариантами, явно показывают лучшие технические и эксплуатационные качества.

Вы разбираетесь в вопросах принципа работы и схем подключения ЭПРА и хотите дополнить изложенный выше материал личными наблюдениями? Или хотите поделиться полезными рекомендациями по нюансам ремонта, замены или выбора пускорегулирующего аппарата? Пишите, пожалуйста, свои комментарии к этой записи в блоке ниже.

ЭПРА – что это такое, и как работает

Люминесцентные лампы напрямую от сети в 220 вольт не работают. Им необходим специальный переходник, который будет стабилизировать напряжение и сглаживать пульсацию тока. Этот прибор носит название пускорегулирующая аппаратура (ПРА), состоящая из дросселя, с помощью которого сглаживается пульсация, стартер, используемый как пускатель, и конденсатор для стабилизации напряжения. Правда, ПРА в этом виде – это старый блок, который постепенно выводится из оборота. Все дело в том, что ему на смену пришла новая модель – ЭПРА, то есть, тот же пускорегулирующий аппарат, только электронного типа. Итак, давайте разберемся в ЭПРА – что это такое, его схема и основные составляющие.

Конструкция и принцип работы ЭПРА

По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже.

Преимущества

  • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
  • Она не моргает и не шумит.
  • Коэффициент мощности – 0,95.
  • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
  • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
  • Обеспечение плавного свечения, без мерцания.
Внутреннее устройство ЭПРА

Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.

Схема устройства

Начнем с того, что люминесцентные лампы – это газоразрядные источники света, которые работают по следующей технологии. В стеклянной колбе находятся пары ртути, в которые подается электрический разряд. Он-то и образует ультрафиолетовое свечение. На саму колбу изнутри нанесен слой люминофора, который преобразует ультрафиолетовые лучи в видимый глазами свет. Внутри лампы всегда находится отрицательное сопротивление, вот почему они не могут работать от сети в 220 вольт.

Но тут необходимо выполнить два основных условия:

  1. Разогреть две нитки накала.
  2. Создать большое напряжение до 600 вольт.

Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть, для коротких светильников мощностью 18 Вт оно меньше, для длинных мощностью выше 36 Вт больше.

Теперь сама схема ЭПРА.

Начнем с того, что люминесцентные лампы, к примеру, ЛВО 4×18, со старым блоком всегда мерцали и издавали неприятный шум. Чтобы этого избежать, необходимо подать на нее ток частотой колебания более 20 кГц. Для этого придется повысить коэффициент мощности источника света. Поэтому реактивный ток должен возвращаться в специальный накопитель промежуточного типа, а не в сеть. Кстати, накопитель с сетью никак не связан, но именно он питает лампу, если случиться сетевой переход напряжения через ноль.

Как работает

Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1.

После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

Электронный пускорегулирующий аппарат

В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки:

  • Одна из них рабочая, в которой всего лишь два витка. Через нее происходит нагрузка на цепь.
  • Две – управляющие. В каждой по четыре витка.

Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом.

Далее происходит следующее:

  • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже.
  • Переменное напряжение с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первая и вторая нить накала.

Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной.

Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений.

Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды.

Тестирование

Перед тем как запустить ЭПРА в производство проводились всевозможные тесты, которые показатели, что встроенный люминесцентный светильник может работать в достаточно широком диапазоне подаваемых на него напряжений. Диапазон составил 100-220 вольт. При этом оказалось, что частота преобразователя изменяется в следующей последовательности:

  • При 220 вольт она составила 38 кГц.
  • При 100 вольтах 56 кГц.

Но необходимо отметить, что при снижении напряжения до 100 вольт яркость свечения источника света явно уменьшилась. И еще один момент. На люминесцентный светильник всегда подается ток переменного типа. Это создает условия его равномерного износа. А точнее сказать, износа его нитей накаливания. То есть, увеличивается срок эксплуатации самой лампы. При тестировании лампы постоянным током, срок ее службы снизился в два раза.

Причины неисправностей

Итак, по каким причинам люминесцентная лампа может не гореть?

  • Трещины в местах пайки на плате. Все дело в том, что при включении светильника плата начинает нагреваться. После того как он будет включен, происходит остывание блока ЭПРА. Перепады температуре негативно влияют на места пайки, поэтому появляется вероятность обрыва схемы. Исправить неполадку можно пайкой обрыва или даже обычной его чисткой.
  • Если произошел обрыв нити накаливания, то сам блок ЭПРА остается в исправном состоянии. Так что эту проблему можно решить просто – заменить сгоревшую лампу новой.
  • Скачки напряжения являются основной причиной выхода из строя элементов электронного ПРА. Чаще всего выходит из строя транзистор. Производители пускорегулирующей аппаратуры не стали усложнять схему, поэтому варисторов в ней нет, который бы и отвечали за скачки. Кстати, и установленный в цепь предохранитель также от скачков напряжения не спасает. Он срабатывает лишь в том случае, если один из элементов схемы будет пробит. Поэтому совет – скачки напряжения обычно присутствуют в непогоду, поэтому не стоит включать люминесцентную лампу, когда за окном сильный дождь или ветер.
  • Неправильно проведена схема подключения аппарата к лампам.

Это интересно

В настоящее время ЭПРА устанавливаются не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами. При этом нельзя использовать один аппарат, предназначенный для одного вида ламп, к другой лампе. Во-первых, не подойдут по параметрам. Во-вторых, у них разные схемы.

При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет устанавливаться.

Оптимальный вариант модели – это аппараты с защитой от нестандартных режимов работы источника света и от деактивации их.

Обязательно обратите внимание на позицию в паспорте или инструкции, где указано, в каких погодных климатических условиях электронный ПРА может работать. Это влияет и на качество эксплуатации, и на срок службы.

Подключение

И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу.

Что такое ЭПРА и его назначение в люминесцентном светильнике

Люминесцентные светильники обладают некоторыми недостатками, которые становятся заметными после включения света. Сильное гудение и частое мерцание света, наблюдающееся при работе подобных встроенных светильников, может вывести из душевного равновесия любого человека. Единственным решением этой проблемы является установка специального пускорегулирующего устройства под названием ЭПРА.

Оглавление:

  • Электронный балласт ЭПРА
  • Как устроен ЭПРА 18 Вт для светодиодных ламп
  • ЭПРА для люминесцентных ламп
  • Включение люминесцентного светильника
  • Предварительный нагрев люминесцентного светильника
  • Зажигание люминесцентного светильника
  • Горение люминесцентного светильника
  • ЭПРА схема подключения
  • Достоинства и недостатки ЭПРА 18 Вт

Производство люминесцентных светильников задумывалось для развития систем освещения, использовавших обычные лампы накаливания, которые обладали крайне малым сроком эксплуатации. Максимальный срок службы лампы накаливания составляет около двух тысяч часов, что не может сравниться с долговечностью люминесцентных ламп, который насчитывает более 16 тысяч часов. Кроме этого, люминесцентные лампы обладают хорошим световым потоком, который превышает свет от обычных ламп более чем в шесть раз.

Электронный балласт ЭПРА

Электронным балластом называется специальное изделие, которое автоматически запускает люминесцентные лампы и продолжительное время поддерживает их в работе. Изготовление ЭМПРА началось три десятилетия тому назад. Они должны были заменить большие пускорегулирующие изделия. Специалисты связывают это с тем, что у старых пускорегулирующих аппаратов было очень много недостатков, которые сильно осложняли их использование.

Перечень основных недостатков такой:

  • располагающийся в панели пускорегулирующего аппарата дроссель был больших габаритов и очень сильно шумел при работе
  • довольно частое мерцание света
  • очень маленький коэффициент полезного действия
  • при поломке стартера может наблюдаться запоздалое срабатывание люминесцентной лампы.

Как устроен ЭПРА 18 Вт для светодиодных ламп

Новый ЭМПРА для светодиодной лампы, приобретенный в любом магазине, представляет собой такие составляющие:

  1. Качественный фильтр частоты, который сглаживает помехи низкого уровня и направлен на выводы изделия. Подобный фильтр помогает уменьшить воздействие светодиодной лампы на остальное бытовое оборудование, к примеру, на число помех при работе радиоприемников или телевизоров.
  2. Мощный выпрямитель, который преобразовывает в схеме переменное напряжение в постоянное.
  3. Небольшой инвертор.
  4. Разные специальные узлы, которые необходимы для корректировки мощности в схеме светодиодной лампы.
  5. Малогабаритный фильтр постоянного напряжения.
  6. Качественный дроссель, ограничивающий максимальный ток в схеме.

А также инвертор зачастую оснащен приспособлением, которое несет ответственность за плавность регулирования яркости света светодиодной лампы.

ЭПРА для люминесцентных ламп

Люминесцентный светильник, который снабжен ЭПРА, начинает работать, проходя несколько основных этапов.

Включение люминесцентного светильника

Специальный выпрямитель, который отвечает за преобразование постоянного напряжения в переменное, передает его на буфер мощного конденсатора. Далее, это напряжение проходит дальше и оказывается на полумостовом инверторе. В это время заряжаются все конденсаторы и микросхемы маленького напряжения.

Когда значение напряжения достигает показателя 7 вольт, то начинается намеренное сбрасывание микросхемы, а потом заряжается управляющий конденсатор, который регулируют несколько транзисторов. При достижении напряжением значения в 12 вольт, элементы люминесцентной лампы быстро нагреваются.

Предварительный нагрев люминесцентного светильника

При перемещении тока в изделии, сразу начинается уменьшение максимальной частоты колебаний, а значение напряжения возрастает. Прогревается люминесцентный светильник всего несколько секунд, если начинать отсчет с момента подачи напряжения на изделие. В этом случае электронный балласт играет роль систематизатора, потому что он не дает лампе запустится, не пройдя этап подготовительного прогрева. Это поможет избежать многих проблем в работе светильника.

Зажигание люминесцентного светильника

Значения показателей полумоста, к примеру, его амплитуды, уменьшаются до своего минимума. Для того чтобы люминесцентный светильник загорелся, необходимо напряжение около 620 вольт. В противном случае он просто не будет работать. Специальный дроссель способен значительно превысить это значение, увеличивая напряжение в электрической сети, что в дальнейшем приводит к зажиганию светильника. Обычно весь этот процесс занимает около нескольких секунд.

Горение люминесцентного светильника

Из-за работы электронного балласта, сила тока не превышает оптимальное значение для качественной работы лампы. ЭПРА полностью контролирует управление амплитудой переключения полумоста, обеспечивая тем самым стабильную работу светильника.

ЭПРА схема подключения

Сначала необходимо аккуратно разобрать люминесцентный светильник. Далее, стоит извлечь из него устаревшие компоненты изделия. Это, прежде всего, дроссель, разные конденсаторы, стартер и другие элементы. В светильнике необходимо оставить лишь люминесцентные лампы, жгуты проводов и ЭПРА.

Сделать ЭПРА подключение способен абсолютно любой человек, обладающий минимальными познаниями о работе электрических схем. Конечно, что людям, не располагающим опытом в этой области, даже и не следует пытаться, а необходимо обратиться к опытному электрику.

Для подключения электронного балласта будут необходимы такие инструменты и материалы:

  • набор отверток
  • бокорезы
  • прибор, определяющий фазы тока
  • небольшое количество изоленты
  • довольно острый нож, необходимый для обработки концов проводов
  • крепежные материалы.

Перед тем как собрать схему, необходимо определиться с местоположением изделия ЭПРА внутри люминесцентного светильника. При этом стоит учесть длины абсолютно всех проводов и наличие удобного доступа к нужной управляющей системе. Именно поэтому стоит заранее проделать отверстие в корпусе светильника, куда есть возможность установить ЭПРА при помощи крепежных материалов. Далее, нужно подключить электронный балласт к разъемам светильника. Существует еще один не менее важный момент, который заключается в том, что мощность ЭПРА обязана быть в несколько раз больше, чем у люминесцентного светильника.

Как только окончен процесс правильной сборки люминесцентного светильника с устройством ЭПРА, необходимо установить его на нужное место. Сначала стоит проверить мультиметром все провода, которые торчат из стены, на присутствие в них рабочего напряжения. Когда оно отсутствует, то нужно соединить все контакты с оборудованием. После всех этих действий, стоит сделать тестовый запуск светильника, оборудованного ЭПРА. В случае когда все действия прошли успешно, то люминесцентные лампы обязаны загореться одновременно, без дополнительного процесса разогрева, а излучаемый свет не должен часто мерцать.

Достоинства и недостатки ЭПРА 18 Вт

Опытные электрики выделяют несколько главных достоинств использования электронных балластов в работе люминесцентных светильников. К ним, прежде всего, можно отнести:

  1. Сбережение максимальной мощности света, при уменьшении количества потребляемой блоком питания электрической энергии.
  2. Отсутствие сильного мерцания света, которое считается особенностью люминесцентных светильников.
  3. Уменьшение шума в процессе работы светильника.
  4. Большой срок эксплуатации лампы, что стало возможным из-за применения устройства ЭПРА.
  5. Удобное управление яркостью света люминесцентного светильника.
  6. Устойчивость к колебаниям и перепадам рабочего напряжения в электрической сети питания.
  7. Большая экономия в плане следующих замен основных деталей светильника. Из-за того, что при помощи блока питания будет использоваться наиболее плавный режим пуска изделия, то это может увеличить срок эксплуатации стартеров и люминесцентных ламп.

Главным недостатком применения ЭПРА является, как и у других новейших технологий и изделий, очень высокая стоимость по сравнению с остальными подобными блоками питания.

Схема эпра для люминесцентных ламп

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1 ).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети

220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2 ), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max =32 B; Uос =5 В; Uнеотп.и.max =5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.

Электронный балласт: современное решение для качественной и экономной работы люминесцентных ламп

Несмотря на то, что долговечные и надёжные люминесцентные лампы прочно вошли в нашу жизнь, усовершенствованный пускорегулирующий механизм к ним ещё не оценён потребителями по достоинству. Основная причина этого – высокая цена на электронные пускорегулирующие аппараты.

Главное преимущество схемы балласта для люминесцентных ламп заключается в экономии энергии, потребляемой источником света (до 20%) и увеличении срока её службы. Потратив деньги на покупку ЭПРА, мы экономим на электроэнергии и приобретении новых ламп в будущем. К преимуществам также можно отнести бесшумность, мягкость пуска и простоту установки.

Воспользовавшись прилагаемой к устройству инструкцией, компактную микросхему электронного балласта удастся без проблем установить в светильник. Заменив ею традиционный дроссель, стартер и конденсатор, мы позволим лампе стать более экономной.

Устройство ЭПРА для люминесцентных ламп

Схемы электронных балластов для люминесцентных ламп выглядят следующим образом: На плате ЭПРА находится:

  1. Фильтр электромагнитных помех, который устраняет помехи, приходящие со стороны сети. А также гасит электромагнитные импульсы самой лампы, которые могут негативно влиять на человека и окружающие бытовые приборы. Например, создавать помехи в работе телевизора или радиоприёмника.
  2. Задача выпрямителя — преобразовывать постоянный ток сети в переменный, подходящий для питания лампы.
  3. Коррекция коэффициента мощности – схема, отвечающая за контроль сдвига по фазе переменного тока, проходящего через нагрузку.
  4. Сглаживающий фильтр предназначен для снижения уровня пульсации переменного тока.

Как известно, выпрямитель идеально выпрямить ток не в состоянии. На выходе из него пульсация может составлять от 50 до 100 Гц, что неблагоприятно сказывается на работе лампы.

  • Инвертор используется полумостовой (для небольших ламп) или мостовой с большим количеством полевых транзисторов (для мощных ламп). КПД у первого типа относительно невысокий, но это компенсируется микросхемами-драйверами. Основная задача узла – преобразование постоянного тока в переменный.

    Перед тем, как выбрать энергосберегающую лампочку. рекомендуется изучить технические характеристики её разновидностей, их преимущества и недостатки. Особое внимание следует уделить месту установки компактной люминесцентной лампы. Очень частое включение-выключение или морозная погода на улице значительно сокращают продолжительность работы КЛЛ.

    Подключение LED лент в сеть 220 Вольт осуществляется с учетом всех параметров осветительных устройств — длина, количество, монохромность или многоцветность. Подробнее об этих особенностях — здесь.

  • Дроссель для люминесцентных ламп (специальная индукционная катушка из свёрнутого проводника) участвует в подавлении помех, накоплении энергии и плавной регулировке яркости.
  • Защита от перепадов напряжения – устанавливается не во всех ЭПРА. Защищает от колебаний напряжения в сети и ошибочного пуска без лампы.
  • Принцип действия устройства

    Схему включения люминесцентной лампы вместе с балластом можно разделить на четыре основные фазы.

    Из выпрямителя ток поступает на буфер конденсатора, где сглаживается частота пульсации. Затем высокое постоянное напряжение попадает на полумостовой инвертор. Конденсаторы низкого напряжения электрода лампы и микросхемы заряжаются.

    Как только напряжение достигает 5,5 В, микросхема сбрасывается. Транзисторы регулируют зарядку конденсатора компенсационной обратной связи. Напряжение растёт. И когда оно достигает 12 В микросхема начинает генерировать колебания – система входит в фазу предварительного нагрева.

    Если лампы нет, цепь разрывается на этапе зарядки конденсаторов низкого напряжения.

    После генерирования колебаний ток течёт через центральную часть полумоста и электроды лампы. Частота колебаний постепенно снижается, а напряжение тока растёт. Весь процесс нагрева в среднем занимает до 1,8 секунды с момента включения. При этом напряжение довольно низкое, что не позволяет лампе включиться раньше положенного срока. Лампа за это время успевает прогреться. Так называемый холодный поджиг портит лампы – их концы темнеют. ЭПРА создан, чтобы надёжно защитить лампу от такого неправильного пуска.

    Частота полумоста снижается до минимума и приближается к показателям резонансной частоты контура, образованного электродами лампы. Минимальное значение напряжения зажигания лампы 600 Вольт. Дроссель способствует преодолению током этого значения – повышает напряжение и лампа зажигается. Поджиг происходит в среднем за 1,7 секунды.

    Чтобы оценить уровень эффективности применения диммера для ламп накаливания. необходимо проанализировать все плюсы и минусы использования такой схемы управления освещением. При покупке любых ламп, будет не лишним обратить внимание, могут ли они быть подвергнуты диммированию

    Установка блока защиты может продлить срок службы лампочек накаливания путем их плавного включения. Для бытовых галогенок в этих же целях используют электронный понижающий трансформатор.

    Частота тока падает до номинальной рабочей частоты. В процессе работы конденсаторы низкого напряжения постоянно заряжаются. Активируется упреждающее управление, которое регулирует частоту переключения полумоста.

    Мощность лампы поддерживается в достаточно стабильном положении, даже если происходят перепады напряжения в сети.

    • Задействование схемы ЭПРА для люминесцентных ламп исключает сильное нагревание прибора, поэтому о пожарной безопасности светильника можно не беспокоиться.
    • Устройством обеспечивается равномерное свечение – глаза не устают.
    • С недавнего времени в офисных помещениях правилами охраны труда рекомендовано использовать ЭПРА совместно со всеми люминесцентными лампами.

    Видео с примером работы люминесцентной лампы от ЭПРА

    ЭПРА – что это такое, и как работает

    Люминесцентные лампы напрямую от сети в 220 вольт не работают. Им необходим специальный переходник, который будет стабилизировать напряжение и сглаживать пульсацию тока. Этот прибор носит название пускорегулирующая аппаратура (ПРА), состоящая из дросселя, с помощью которого сглаживается пульсация, стартер, используемый как пускатель, и конденсатор для стабилизации напряжения. Правда, ПРА в этом виде – это старый блок, который постепенно выводится из оборота. Все дело в том, что ему на смену пришла новая модель – ЭПРА, то есть, тот же пускорегулирующий аппарат, только электронного типа. Итак, давайте разберемся в ЭПРА – что это такое, его схема и основные составляющие.

    Конструкция и принцип работы ЭПРА

    По сути, ЭПРА – это электронное плато, небольшого размера, в состав которого входит несколько специальных электронных элемента. Компактность конструкции дает возможность установить плато в светильник вместо дросселя, стартера и конденсатора, которые все вместе занимают больше места, чем ЭПРА. При этом схема подключения достаточно проста. О ней чуть ниже.

    Преимущества

    • Люминесцентная лампа с ЭПРА включается быстро, но плавно.
    • Она не моргает и не шумит.
    • Коэффициент мощности – 0,95.
    • Новый блок практически не греется по сравнению с устаревшим, а это прямая экономия электрического тока до 22%.
    • Новый пусковой блок снабжен несколькими видами защиты лампы, что повышает ее пожарную безопасность, безопасность эксплуатации, а также продлевает в несколько раз срок службы.
    • Обеспечение плавного свечения, без мерцания.

    Внутреннее устройство ЭПРА

    Внимание! Современные правила охраны труда предписывают использовать в рабочих помещениях люминесцентные лампы, снабженные именно этой новой аппаратурой.

    Схема устройства

    Начнем с того, что люминесцентные лампы – это газоразрядные источники света, которые работают по следующей технологии. В стеклянной колбе находятся пары ртути, в которые подается электрический разряд. Он-то и образует ультрафиолетовое свечение. На саму колбу изнутри нанесен слой люминофора, который преобразует ультрафиолетовые лучи в видимый глазами свет. Внутри лампы всегда находится отрицательное сопротивление, вот почему они не могут работать от сети в 220 вольт.

    Но тут необходимо выполнить два основных условия:

    1. Разогреть две нитки накала.
    2. Создать большое напряжение до 600 вольт.

    Внимание! Величина напряжения прямо пропорциональна длине люминесцентной лампы. То есть, для коротких светильников мощностью 18 Вт оно меньше, для длинных мощностью выше 36 Вт больше.

    Теперь сама схема ЭПРА.

    Начнем с того, что люминесцентные лампы, к примеру, ЛВО 4×18, со старым блоком всегда мерцали и издавали неприятный шум. Чтобы этого избежать, необходимо подать на нее ток частотой колебания более 20 кГц. Для этого придется повысить коэффициент мощности источника света. Поэтому реактивный ток должен возвращаться в специальный накопитель промежуточного типа, а не в сеть. Кстати, накопитель с сетью никак не связан, но именно он питает лампу, если случиться сетевой переход напряжения через ноль.

    Как работает

    Итак, сетевое напряжение в 220 вольт (оно переменное) преобразуется в постоянное с показателем 260-270 вольт. Сглаживание производится с помощью электролитического конденсатора С1.

    После чего постоянное напряжение необходимо перевести в высокочастотное напряжение до 38 кГц. За это отвечает полумостовой преобразователь двухтактного типа. В состав последнего входят два активных элемента, которые собой представляют два высоковольтных транзистора (биполярных). Их обычно называют ключами. Именно возможность перевода постоянного напряжения в высокочастотное дает возможность уменьшить габариты ЭПРА.

    Электронный пускорегулирующий аппарат

    В схеме устройства (балласта) также присутствует трансформатор. Он является одновременно и управляющим элементом преобразователя, и нагрузкой для него. Этот трансформатор имеет три обмотки:

    • Одна из них рабочая, в которой всего лишь два витка. Через нее происходит нагрузка на цепь.
    • Две – управляющие. В каждой по четыре витка.

    Особую роль во всей этой электрической схеме играет динистор симметричного типа. В схеме он обозначен, как DB3. Так вот этот элемент отвечает за запуск преобразователя. Как только напряжение в соединениях его подключения превышает допустимый порог, он открывается и подает импульс на транзистор. После чего происходит запуск преобразователя в целом.

    Далее происходит следующее:

    • С управляющих обмоток трансформатора импульсы поступают на транзисторные ключи. Эти импульсы являются противофазными. Кстати, открытие ключей вызывает наводку на двух обмотках и на рабочей тоже.
    • Переменное напряжение с рабочей обмотки подается на люминесцентную лампу через последовательно установленные элементы: первая и вторая нить накала.

    Внимание! Емкость и индуктивность в электрической цепи подбираются таким образом, чтобы в ней возникал резонанс напряжений. Но при этом частота преобразователя должна быть неизменной.

    Обратите внимание, что на конденсаторе С5 будет происходить самое большое падение напряжения. Именно этот элемент и зажигает люминесцентную лампу. То есть, получается так, что максимальная сила тока разогревает две нити накала, а напряжение на конденсаторе С5 (оно большое) зажигает источник света.

    По сути, светящаяся лампа должна снизить свое сопротивление. Так оно и есть, но снижение происходит незначительно, поэтому резонансное напряжение все еще присутствует в цепи. Это и есть причина, по которой лампа продолжает светиться. Хотя дроссель L1 создает ограничения тока на показатель разницы сопротивлений.

    Преобразователь продолжает после запуска работать в автоматическом режиме. При этом его частота не меняется, то есть, идентична частоте запуска. Кстати, сам запуск длится меньше одной секунды.

    Тестирование

    Перед тем как запустить ЭПРА в производство проводились всевозможные тесты, которые показатели, что встроенный люминесцентный светильник может работать в достаточно широком диапазоне подаваемых на него напряжений. Диапазон составил 100-220 вольт. При этом оказалось, что частота преобразователя изменяется в следующей последовательности:

    • При 220 вольт она составила 38 кГц.
    • При 100 вольтах 56 кГц.

    Но необходимо отметить, что при снижении напряжения до 100 вольт яркость свечения источника света явно уменьшилась. И еще один момент. На люминесцентный светильник всегда подается ток переменного типа. Это создает условия его равномерного износа. А точнее сказать, износа его нитей накаливания. То есть, увеличивается срок эксплуатации самой лампы. При тестировании лампы постоянным током, срок ее службы снизился в два раза.

    Причины неисправностей

    Итак, по каким причинам люминесцентная лампа может не гореть?

    • Трещины в местах пайки на плате. Все дело в том, что при включении светильника плата начинает нагреваться. После того как он будет включен, происходит остывание блока ЭПРА. Перепады температуре негативно влияют на места пайки, поэтому появляется вероятность обрыва схемы. Исправить неполадку можно пайкой обрыва или даже обычной его чисткой.
    • Если произошел обрыв нити накаливания, то сам блок ЭПРА остается в исправном состоянии. Так что эту проблему можно решить просто – заменить сгоревшую лампу новой.
    • Скачки напряжения являются основной причиной выхода из строя элементов электронного ПРА. Чаще всего выходит из строя транзистор. Производители пускорегулирующей аппаратуры не стали усложнять схему, поэтому варисторов в ней нет, который бы и отвечали за скачки. Кстати, и установленный в цепь предохранитель также от скачков напряжения не спасает. Он срабатывает лишь в том случае, если один из элементов схемы будет пробит. Поэтому совет – скачки напряжения обычно присутствуют в непогоду, поэтому не стоит включать люминесцентную лампу, когда за окном сильный дождь или ветер.
    • Неправильно проведена схема подключения аппарата к лампам.

    Это интересно

    В настоящее время ЭПРА устанавливаются не только с газоразрядными источниками света, но и с галогенными и светодиодными лампами. При этом нельзя использовать один аппарат, предназначенный для одного вида ламп, к другой лампе. Во-первых, не подойдут по параметрам. Во-вторых, у них разные схемы.

    При выборе ЭПРА необходимо учитывать мощность лампы, в которую он будет устанавливаться.

    Оптимальный вариант модели – это аппараты с защитой от нестандартных режимов работы источника света и от деактивации их.

    Обязательно обратите внимание на позицию в паспорте или инструкции, где указано, в каких погодных климатических условиях электронный ПРА может работать. Это влияет и на качество эксплуатации, и на срок службы.

    Подключение

    И последнее – это схема подключения. В принципе, ничего сложного. Обычно производитель прямо на коробке указывает эту самую схему подключения, где точно по клеммам указаны и номера, и контур подключения. Обычно для вводного контура – три клеммы: ноль, фаза и заземление. Для выходного на лампы – по две клеммы, то есть попарно, на каждую лампу.

    Для чего нужна пускорегулирующая аппаратура для люминесцентных ламп

  • Как работает электронный балласт и его схема

  • Как работает стартер для ламп дневного света